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Preface

The purpose of this thesis is to continue investigation of the applying Porter’s high-
gain error actuated proportional plus integral (PI) design techniques to the development of
control laws for an Advanced Tactical Fighter (ATF) type aircraft, the CRCA. Initial work
was accomplished by Capt. Daryl Hammond and the results of applying P1 control based
npon output feedback were very promising. The results obtained of this effort display very
robust tracking and decoupling of outputs with the fixed-gain designs and a much more
realistic system bandwidth. More investigation of the adaptive algorithm will be necessary

to conclude this study of PI control for the set of inputs and outputs selected on the CRCA.

My personal thanks and gratitude are extended to all who have helped make this
thesis effort possible, especially my thesis advisor Dr. John J. D’Azzo and predecessor
Capt. Daryl Hammend. Thank you both for the unending support ard guidance. The
exceptional support and resources made available by the Flight Dynamics Laboratory were

also greatly appreciated.

Finally, I would like to thank my family and friends for their kind support and

understanding through this long and difficult endeavor.

Jamie Lynn Foelker
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AFIT/GE/ENG/R9-12

Abstract

Multivariable control laws developed ty Dr. Brian Porter of the University of
Salford. England are used to successfully perform maneuvering tracking tasks with the
NASA/Grumman Control Reconfigurable Combat Aircraft (CRCA). Porter’s method is
nsed to design discrete Proportional plus Integral (PI) control laws. Output and selected
state rate feeilback are used. The results in three no failure flight conditions show robust
rracking control of the CRCA for five selected maneuvers. Single failures are introduced
o test the ability of the fixed-g~in designs to successfully control the aircraft and perform
the maneuvers. The time responses show that discrete PI control law can make the CRCA
successfully perform all five maneuvers for two of the three control surface failures investi-
gated in two of the three point designs. The step response PI control law results in stable
control for only one of three failure situations. For high gains, the system transfer function
hecomes asymptotically diagonal (the outputs are decoupled). Based on this property, the
frequency analysis is obtained for the discrete PI design using each output with respect to
its associated input. Phase margins in excess of 15°, gain margins of greater than 6dB, and
bandwidths in the range of 5-10 rad/sec are the result. The adaptive controller displays
a larger than exrected roll angle output in two of the maneuvers as compared to the step
response PI results. An adaptive algorithm using a re:ursive least squares estimation is
run with failure introduction occurring at one of two times in the simulation. The adaptive

resilts also display decoupling of the outputs in the steady state.

xi




DISCRETE PROPORTIONAL PLUS INTEGRAL (PI)
MULTIVARIABLE CONTROL LAWS FOR THE CONTROL
RECONFIGURABLE COMBAT AIRCRAFT (CRCA)

[. INTRODUCTION

.l BACKGROUND

Modern aircraft designs present the control engineer with great challenges. The
demands for increased maneuverability can be met only at the expense of aerodvnamic
stability. As aircraft become highly maneuverable there are some mission flight conditions
which a human alone cannot control, and an on-board computer must be nsed for haszic
~tahility. These control systems are termed fly-bv-wire since there are no mechaunical
connections between the pilot and control surfaces; only electrical signals from the flight
control computer. In addition to the role of stabilizing the aircraft, the flight control system
must also provide the plane with the ability to make the outputs follow input commands.
The control laws developed are the mathematical equations which compute the required

inputs to the aircraft or plant.

Modern techniques using multivariable control have a distinct advantage over their
conventional counterparts in that only one control system need be developed for the aircraft
to be abie to perform specific tracking tasks where more than one set of inputs and outputs
are commanded. Separate loop designs are necessary in order to make each output track
a specific input when single input single output (SISO) designs are used. This can make
the design of a multiple input multiple cutput (MIMO) system extremelv involved and
tedions.

Another issue which must be addressed is that of whether the designed fixed-gain
flight control system is robust enough to provide adequate control when the aircraft suffers
a control surface loss or malfunction. This problem is one of substantial concern to the

military. The first most important area of concern is that of returning the flight crews
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and aircraft to safety after combat damage has been sustained. Another concern is that
of accomplishing the mission. The aircraft must remain stable and retain at least limited

mission capabilities.

1.2 PROBLEM STATEMENT

Design techniques developed by Professor Brian Porter of the University of Salfurd,
England allow for the development of a single, fixed gain control algorithin which nses
output feedback to make the plant of interest perform tracking tasks with little to no

coupling of the outputs.

The goal of this thesis is to use Porter's multivariable design techniques to assess
the effects of single failure conditions on control algorithms designed for a healthy aircraft
performing five specified maneuvers in three different points on its flight envelope. The
most desirable result of this thesis would be that one set of design parameters for the fixed-
gain designs would yield adequate stability and control of the aircraft in all three flight
conditions as well as provide satisfactory performance when a single failure condition is
introduced. Responses obtained from single failure modes, however, prove that a fixed set
of design parameters is an optimistic goal. Thus, the introduction of adaptive control is

deemed necessary.

This thesis effort is a follow-on to the work accomplished by Capt. Daryvl Hammond
in MULTIVARIABLE CONTROL LAW DESIGN FOR THE CONTROL RECONFIG-
URABLE COMBAT AIRCRAFT (CRCA), 1988 (4). Hammond's results were the first
obtained using Porter’s control techniques on the CRCA and served as a baseline for
performance comparisons. The number of maneuvers performed will be increased from

Hammond’s two to five and an additional failure condition will be simulated.

1.3 SUMMARY OF CURRENT KNOWLEDGE

Hammond used two of Porter's design methods to develop Proportional plus lutegral
(PI) and Proportional plus Integral plus Derivative (PID) control algorithms. Hammond

nsed four different techniques to design PI controllers:
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!. continuous controller based on known plant parameters,

-

2. discrete controller based on known plant parameters.
3. discrete step response controller based on unknown plant parameters, and

4. adaptive version of step response controller to take plant variations into consideration.

is research concluded with an investigation of the discrete PID controlier both with anid

without the actuator dynamics.

Hammond found that the fixed, high gain Pl controller based on knowloadge of 1ha
aircraft parameters displayed robust performance in normal aircraft flight conditions and
that a fixed set of design parameters provided satisfactory performance in 70% of the
flight configurations tested. He also found that the discrete PI controller outperformed
its continuous counterpart. However, the discrete step response PI controller conld not
adequately control the left flaperon failure, so adaptive control was applied. The adaptive
controller’s performance was exceptional in the simulation tested. The PID controller

performed very well in simulations where the CRCA’s actuator dynamics were not included.

1.4 ASSUMPTIONS

The following assumptions made in Hammond’s thesis will be used in this effort. and

their effects on the thesis scope will be noted.

. The linearized equations of motion are used in a point design {initial velocity and
T D - 1 fiacd at a i ondition} and oo 1 variati re allowed
aitivude are assumed fiacd at a uim condition) and only small variations are allowed

about the trim point.
2. The outputs used are assumed to be measurable and readily accessible.

3. The aircraft is treated as a rigid body so that bending modes do not appear in the

linearized equations of motion.

4. Fuel consumption is considered minimal over the short simulation durations, so mass

is treated as a constant.




()]

. The earth’s surface is used as the inertial reference frame which can again be at-
tributed to short simulations and aircraft sensors that are not sensitive enough to

detect the earth’s rotation (4:1-6).

6. The atmosphere is assumed fixed to the earth’s surface and wind effects are not

considered.

1.5 APPROACH

This thesis effort focuses on the two methods of designing discrete non-adaptive
PI controllers and also investigates an adaptive approach where applicable. Hammond's
previous work is used as a baseline and the new research has been built from his existing
computer programs. These computer programs are expanded to perform the additional

flight operations.

The CRCA is chosen as the research vehicle primarily because there is a great deal
of aerodynamic data available for single and multiple control surface losses and failures.

This data is an invaluable aid in assessing the robustness of the individual PI designs.

Hammond's design parameters are used initially and then necessary changes made
to them to satisfactorily control all outputs. An additional goal of trying to obtain “rea-
sonable” controller gains is added. Frequency analysis will be performed to ensure that
the phase and gain margins specified by MIL-F-9490C are met and a realistic bandwidth

is obtained.

The research will be performed on the powerful software package MATRIXx. All
necessary modifications have been made to the computer programs in order to run the
simulations on Version 7.0. The System Build feature of MATRIX x (6) allows for straight-

forward multivariable design and analysis.

1.6 OVERVIEW

The remainder of this thesis is organized according to the following schedule. The
aircraft models, actuators, and ARMA representation are discussed in Chapter 2. The

theory behind the different control law design methods are presented in Chapter 3. The
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The results obtained from the discrete PI controller can be found in Chapter 1. and the
step response and adaptive results are contained in Chapter 5. Chapter 6 contains a
summmary of the results obtained and includes recommendations for future work using

Porter’s methods on the CRCA flight control system.
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[I. DESCRIPTION OF MODELS

20 AIRCRAFT DESCRIPTION

The Coutrol Reconfigurable Combat Aircraft (CRCA) is a NASA/Gromman Ad-
vanced Tactical Fighter (ATF) type design. The CRCA was designed for high performance
with relaxed static instability of 12% at low airspeeds (12:3-1). The plane is not slated
for production. but it is being used to assess combat damage survivability. The CRCA,
shown in Figure 2.1, has nine separate control surfaces consisting of two canards, a rudder.
and two flaperons and an elevator on the trailing edge of each wing. The three surfaces
on the trailing edge of each wing are commanded together in this thesis effort in order
to preserve the laminar airflow over the wings. The canards have 30° of positive diliedral
{upward cant from the horizontal) and are “all-flying”, meaning that the longitudinal and

lateral-directional equations of motion for the aircraft are coupled.

2.2 FLIGHT PHASES

The aerodynamic data on the CRCA is available for four design points and the four
design points, or flight conditions are representative of the aircraft’s performance range.
Descriptions of the four flight phases was obtained from Appendix C of Reference (12) and

Hammond’s Chapter 2.

The first flight condition is Air Combat Maneuvering (ACM) Entry. This
flight phase is representative of aircraft conditions normally encountered at the initiation
of an air-to-air engagement or weapons delivery. Altitude can vary from 10.000 to 30.000

feet with velocities just under Mach 1.

The next flight phase is Terrain-Following/Terrain-Avoidance (TFTA). Thisis
alow altitude, high velocity flight condition commonly used to avoid enemy radar detection.
Velocities are as high as those used in ACM Entry, but with altitudes as low as 200 feet
above local ground level. The dynamic pressure, ¢, is very high for this condition and

rapid changes in pitch angle can be expected.

The third point design is ACM Exit. This condition is very difficult to control since

the aircraft has low airspeed with a high angle of attack (~ 30°), steep bank angle (~ 70,
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Figure 2.1. Combat Reconfigurable Combat Aircraft (CRCA) (4)




and a high load factor (~ 3g). The aircraft has been pushed very close to its limits by the

end of the air-to-air encounter.

The fourth flight phase is Short Take-Off and Landing (STOL). This condition
has the lowest airspeed of all four and is the most critical flight phase. The landing
requirements are a maximum landing distance of 1500 feet and a crosswind of 30 knots.

This data was unfortunately not available in time to be incorporated in this thesis effort.

Table 2.1 (4:2-3) summarizes the characteristics of the CRCA's flight phases. The
point designs accomplished in this thesis are valid since the maneuvers performed do not

stray significantly from the design points.

Table 2.1. Flight Conditions

| MISSION SEGMENT [ ALTITUDE, FT | MACH NO. [ LOAD FACTOR

ACM ENTRY 30,000 0.9 Ig |
TF/TA SEA LEVEL 0.9 13 !
ACM EXIT 10,000 0.275 g
STOL 1200 0.185 g

2.3 DETERMINATION OF AIRCRAFT MODELS

2.3.1 STATE SPACE MODELS Linearized state space models of the CRCA have
been obtained utilizing computer prograins at the Flight Dynamics Laboratory at Wright
Patterson Air Force Base (4, 7). All aircraft models used in this thesis are those obtained
from Hammond, with the exception of the 25% rudder failure case models which are

T

extracted from Capt. Kurt Neumann’s thesis computer files (7).

The result of using the CRCA’s nonlinear equations of motion and control and sta-
bility derivatives is a linearized model containing nine states and nine inputs, as shown in

Table 2.2 (4:2-9) for the ACM Entry flight condition.
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Table 2.2. Aircraft State Space Matrices for ACM Entry

( -.0119 —-.0186 -=31.2350 -—32.1804 .0000 .0000 .0000 .0000 .0000 T
—.0324 —~1.0634 294.4548 -1.0634 .0000 .0000 .0000 0000 0000
—.0002 0069 -.6015 .C000  .0N00  .0000 0000 L0000 4000
.0000 .0000 1.0000 .0000  .0000 0000 0000 0000 BISIATS)
.0000 .0000 .0000 .0000 .0000 .0000 L0000 1.0000 0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 1.0000 1349
0000 .0000 .0000 .0000 .0000 .0360 ~.0929 0349 —.9994
.0000 .0000 .0000 .0000 .0000 .0000 -—27.8066 -—2.0376 4913

L .0000 .0000 .0000 .0000 .0000 .0000 2.4582 -.0241 -—.4377J
F 0411 .0411 1322 .0866 1322 .0866 .1018 .1018 .0000 1
—.3163 —-3163 -.9597 -.6194 -—.9597 —.6194 —1.0183 —1.01¢93 .uga0

1014 1014 —.0284 -.0215 -—.0284 0215 —.u200 -.0200 .0000
0003 -.0003 -.0002 —.000t .oouY .0001 -.0001 .0001 .0006
.0000 .0000 .G00U .0000 .0000 .0000 .0000 000 00060
.ouuvy .0000 .0000 .0000 0000 .0000 .0000 00 0060
.0000 .0000 .0000 .0000 .0000 L0000 0000 0000 001y
0762 —.0762 2219 2011 -.2219  —.2011 1109 ~.1109 BODE!
L 0486 —~.0486 .0029 0021 -=.0029 -.0021 0021 ~.0021  -.0544 |
T
z = vy w q b v ¢ 0 por (2.1)
T
u = 6cl 6cr 6tell ‘5te2l 6telr 6te2r ‘5dtelsl ‘Sitelsr ‘5rud (2.
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The eight states As mentioned previously, the three trailing edge control surfaces on
each wing are commanded together. This effectively reduces the number of control surfaces

from nine to the following five;

bg = left canard

8. = right canard

81er = left trailing edge flaperon
dter = right trailing edge flaperon
bru¢ = rudder

The columns of the corresponding left and right trailing edge surfaces of the B matrix
are summed to form a reduced input B matrix. Now that there are only five inputs. only

five outputs can be controlled using output feedback. The five chosen outputs are

v = forward velocity
3 = sideslip angle
& = pitch angle

¢ = bank angle

r = yaw rate

The 9x9 A matrix does not have full rank since the state i is redundant. Therefore,
the fifth row and column are removed and A is reduced to an eight state model. Also,
Hammond found that the remaining eight states had to be reordered so that Autoregressive
Moving Average (ARMA) models could be generated more directly. Table 2.5 (4:2-10)
contains the resulting ACM Entry model of the CRCA used in this and Hammond’s thesis.

The order of inputs and states remains the same for the rest of the flight conditions used




where the eight remaining states are

v = velocity in aircraft X axis
w = velocity in aircraft Z axis
g = pitch rate

68 = pitch angle

Y = yaw angle

¢ = roll angle

J = sideslip angle

p = roll rate

r = yaw rate

The aircraft open loop eigenvalues for the three point designs used are listed in

Table 2.3 and the transmission zeros in Table 2.4.

Table 2.3. Open Loop Eigenvalues of 8x8 CRCA Models

[ ACMENTRY [ ACMEXIT | TFTA ]
-0.0078£70.0495 | 0.0220%,0.0363 0.0236
-0.0562 -0.2139 -0.0457
1.6669 -0.3059 -0.0583
-0.2482+1.832 0.4718 | -0.7559+2.9853
-2.0156 -1.7162 | -2.4418£34.4400
-3.3281 | -0.657241.7084 -5.4284

Table 2.4. Open Loop Transmission Zeros of 8x8 CRCA Mouaels

[ ACMENTRY | ACMEXIT [ TFTA |

L

-1.6844 |

-0.0902 | -2.8974 |
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Table 2.5. Equivalent Aircraft 8x8 Matrices For ACM Entry

.0000
.0000
-32.1804
~1.0634
.0000
.0000
0000
.0000

.0000
.0000
.0000
.0000
.0000
0360
U000
0000

@)

0000 .0000
0000 .0000
—0119 —.0186
—-.0324 -1.0634
0000 .0069
0000 0000
D000 0000
0000 0000
.0000  .0000
.0000  .0000
0411 0411

1.0000 .0000
.0000 .0000
—31.2350 .0000
894.4548 .0000
—.6015 0000
.0000 —.0929
0000 —27.%066
0630 2.1582
0000 .0000
0000 .0000

3206 3206

3163 —.3163 -2.5974 ~2.5974
1014 1014 —.0699  —.0699
0003 —.0003 —.0004 0004

0762 -.0762
0436 —.0486

= [ 8 o u w q 3 p rJ

5339 -.5339
0071 -.0071 -

w= |64 b bt bier brua |

The output matrix is

0 01 0349 0 0 0 O
0 0 0 0 0100
= 1 0 0 0 0 0 0O
010 0 0 0 00
0 0 0 0 0 0 01
2-7

.06000

0000
1.0000
0uoo
0060
4000
11349
=2 U376

-0zl

0000
00900
4000
0000
0006
A
0544 |

-

0000
0350
0000
0noaon
Q000
— 00
1913

— 4377




Simulations will be performed in the three flight phases ACMENTRY,ACMEXIT.
and TFTA and the following single failure cases are investigated in the ACM Entry and
TFTA flight modes:

1. 30% loss of left trailing edge (combiration of three surfaces)
2. 50% loss of left canard

3. 25% loss of rudder

No failures are investigated in ACM Exit since the flight condition is very difficult to
control with the healthy plant. Appendix A contairs the reduced order(3x®) state-space

maodels for all flight conditions and for the single failures used in this thesis.

2.3.2 AUTOREGRESSIVE MOVING AVERAGE (ARMA) MODEL 3okor and

Keviczky's (1) technique is nsed to transform a plant model from state space form

Ar + Bu

-
|

y = ('r

1o an ARMA representation where

ok Ty + Ayylk = DT + -+ Avylk = N)T = Byulk —= DT 4+ -+ Byu(k = N)T (2.3)

and the matrices A; through Ay and B through By are the ARMA coeflicients. This
equation is used by Porter and Fripp (9. 8) with no noise source considered. The reduced
order ARMA model is determined using the ratio of the number of states n to the number
of inputs m, NV = n/m. For the eight state, five input model used in this thesis, two A,

and B, ARMA coefficients arc sufficient to form the output Equation 2.5

Fquation 2.5 can also be expressed as

y(kT) = 8T (kT)o(kT) = 67 (kT)oT (KT) (2.6)
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where, for ease of simulation,

[ 4, [ k- 1)T ]
‘ Ay ) —ylk = NIT
Gokry= | STy = | Y )
B wk — 1T
| By | | u(k - MT

Each coefficient of 8(kT) is a column vector containing the {2 terms of that ARMA coeffi-
cient. Thus. the elements ia the rows of Ay are transposed and placed in one column that
contains the ¢ values. Then the elements of A, occupy the r.>xt [2 positions. Similarly.

the elements of B, and B, each occupy [2 positions in 6{kT).

Each term of o(kT) is an {? x m block diagonal sub matrix. The past outputs
ik — )T, with 1 <1< .V, for each of the m inputs appear as diagonal blocks. The inputs
utk — )T, with 1 < i <.V, appear in diagonal subblocks, each of size m x 1, with only u,

appearing in each subblock. See the example matrices on the next page.

The reduced order model for the CRCA uses

AtkT)T = [AT AT BT BINT ¢ gi=t0 (2.7)

okT)T

Tk =T —yT(k-2)T vT(k - )T uT(k - 2)T)T € R0 (2.%)

The program used to generate the ARMA coefficients for each flignt condition along with
the coefficients for each flight condition is listed in Appendix B. The ARMA representation

of the system is used to run the adaptive algorithm of references (8, 13).
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For example, with n = 2 with 2 inputs and outputs:

NI pk-n 0]
A(1.2) —ya(k — 1) 0
A2, 1) 0 k- 1)
107.2) 0 (k-1
(1. 1) k= 2) 0
Aa(1.2) —plk-2) 0
a(2.1) 0 —yik = 2)

s | S 0 —ylk = 2)
By1.1) (k= 1) 0
Byt 2) up(k — 1) 0
Byi2.1) 0 wik = 1)
Byi2.2) 0 walk = 1)
Ba(1.1) wy(k = 2) 0
Bal1.2) wa(k = 2) 0
Byi2. 1) 0 uy(k = 2)

| 2.2) ] i 0 ualk =2} |

2.5 ACTUATOR MODELS The CRCA has no mechanical connections between
the pilot and the control surfaces and is thus termed a fly-by-wire control system. In order
to adid validity ro the designs accomplished, actuator dynamics must be taken into consid-
cration. [naddition to actnator dynamics, the physical limitations of maximum deflections

1

awd deflection rates mnst also be incorporated into the actuator model. Table 2.6 lists the

Limitations for the three different control surfaces.

Humomond worked primarily with the first order actuator model

& omd (2

h“ontru[( 5)
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Table 2.6. Control Surface Position and Rate Limits

Surface Position Limit | Rate Limit
(deg) (deg/sec)
Canards +60 -30 + 100
Trailing Edges | +30 -30 + 100
Rudder 420 -20 + 100

A second order approximation of the actuator model is used exclusively throughout this

thesis effort.

5113

AL A 10
(s + 53 £ j48) ™ (2.10)

6control(3)

A description of the CRCA is described by a set of linear differential equations
and an eight state model. The aircraft models are linearized about 3 flight conditions,
TF/TA, ACM Entry, and ACM Exit and include second ord-r actuator dynamics. The
autoregressive moving average (ARMA) representation of aircraft is also presented. The

PI control law development is presented in Chapter 3.




[{I. DESIGN PROCEDURES

3! OVERVIEW

The PI controller design techniques developed by Porter are implemented using out-
put feedback. Using output feedback is often more advantageous than using state feodback
if all of the states are not readily available and estimates would have to he used (3:660).
Using Porter’s method, tracking can be achieved with little to no coupling occurring be-
tween outputs. The use of high gain in the forward loop results in an asymptotic transfer
function for the closed loop system composed of fast and slow modes. “The slow modes are
asvuptotically uncontrollable or unobservable. and thus the output response is dominated

by the fast modes.” (3:661)

3.2 DISCRETE. FIXED-GAIN PI CONTROLLER THEORY

The plant must satisfy four necessary criteria before any of Porter’s design techniques

can be used:

1. The plant must be completely controllable.

2. The plant must be completely observable.

B A
3. rank =n+l
D C

1. Transmission zeros can be computed from

,s[—A B 3

| -c D
for the completely controllable and completely observable plant. No transmission
zeros can be located at the origin, or the plant is functionally uncontrollable. The
number of transmission zeros for the plant where [ = mis n — m — d, where d is the

rank deficiency of CB (3:668).
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The continuous aircraft, or plant, may be represented by equations of the form

zy(t) A A z1(t) 0 ;
- + u(t) (3.1)
i‘g(t) A Ax .’L‘Q(t) Ba
z1(t) ] ‘
y(t) = [ c G } (3.2)
l‘o(t) J
where the dimensions are
Iy (n—mjx1
Iy mxl
i (n—m)x{n—-m)
Ago mx 1

By : m x mand has rank m

Cy: m x m and has rank m

Notice that the B matrix in Table 2.5 and the B matrices for the rest of the CRCA's
flight conditions are not of the required form in Equation 3.1. A transformation could be
performed to express the CRCA state space matrices in the form of Equation 3.1. However,
this step has been proven to be unnecessary (3:668-669), and the design can be performed

for any form of the state equations.

The rank of the matrix product CB (the first Markov parameter) must be checked.
For a plant that has rank(Cp)=m, the plant is termed “regular” and only requires output
feedback. For a plant like the CRCA where rank{CB)< m, the plant has a rank deficient
first Markov parameter and rate feedback of the state vector £, must augment the output

feedback. Figure 3.1 illustrates the control law used for irregular plants.

The feedback signal with rate feedback incorporated is now

w= y+AI.'L‘1
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A
e kT) z2(kT)
1 +ixe |
T e . + 1 + - v
—O g o K 2O B J o e
} + Gain xq
w F&C‘Of
l K, ' M
+
. +
N

Figure 3.1. Discrete PI Controller - [rregular Plant

(4)

From Equations 3.1 and 3.2 it can be shown that

I I
wo= [Cl 02} +“’[[An .412J
o) I2
Ty L
= [ F F ] 13.3)
I
From Figure 3.1 it can be seen that
e=r—w

where r = commanded input signal.
Expressing the state equation in the discrete time domain viclds the difference equa-

tion

rk+ )T = ®(T)x(kT) + W(T)u(kT) (3.4)
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where
8(T) = AT = | Ou(T) oD
$21(T)  ¢22(T)
and
T i
‘II(T):/ rge | O | | wD
° By U(T')

anu vhe aifierence equation cepresentuy the iuiegral of the error 1s

sk +1)T =z(kT) +Te(kT)
= 2(kT) +T[r(kT) — w(kT)]
= 2(kT) +Tr(kT) = TFiz1(kT) = T Fyz(kT)

The composite difference equation for the open loop of Figure 3.1 is

ik + )T 1, -TR TR || :¢T) 0 |
z(k+ )T = 0 on P12 2 (kT) | ¥ &
22k + )T (0 on om 2a(kT) | | v
T,
+ 0 | r(kT)
i 0
=(kT)
y=[0 C Cy ]| z1(kT)
z2(kT)

where the control law is

1
T

u(kT) (K1e(kT) + Kp2(kT))

u(kT)

= %[1\’11'(1'.'T) - [\;—xF]l‘l(kT) - [\'1F2I2(kT) + 1\'2:(/»‘7‘)]

3-4
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The closed loop equation for the system can now be written as

; ]
[+ 0T if ~TF, -TF, =(kT)

ni(k+ 1T = F1K2 o1 — FUIRFL 612 — FUIRLFy z,(kT)
ik +1)T L Ky by = FUaK1FL 022 — 792K Fy z2(kT) J
11,
+ | g gy | T (3.10)
el

No changes appear in Equation 3.9, the system output.

The form of Equation 3.10 that is in Porter’s paper (2) is obtained by making the

substitutions
12 2
(3.11)

ST)=eT = [+ AT+ ——+ -

<.

lim e?T = [+ AT + 0(H.0.T.)

T-0
o loar —
}T})T[e -I}=A+4+0(H.O.T)
y AT + ot AT
P11 P12 _ 11 ! 12 (3.12)
b12 P22 AnT AT + 1
T 0 1 0 0 Ly (T)
1mlwn=%/uw = (D) = | T
T-oT 0 B, B, By o T)
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Equation 3.10 can now be written as

[ Sh+ 1T [ -TH -TF <(kT)
rlk+ )T = 0 AnT + Ly AT (AT
[ ra(k+ )T | Boly AnT - By Fy AT + 11— B2 KL E, | | 12(kT) |
[ 11
N o | r(kT) (3.13)
] By

The output equation has not changed from Equation 3.9.

Singular perturbation methods, where f=7l- — o0 are the perturbation variable, is
used to block diagonalize the closed loop system of Equation 3.13 and to determine the

fast and slow modes of the system (3, 2).

Equation 3.13 must first be represented by the form

Flk+ 1T 4, 4 B ) _
= ] ) FAT)+ | r(kT) = AZ(kT)+ Br(kT) (3.11)
Ik + V)T Az Ay B,
W) =[ ¢ ¢ |2) (3.15)
where
(kT
I(kT) = *T)
z1(kT)

and the matrix dimensions are

b
—

(n—=m)x(n-m)

.
o)
e

mxm

B, : m x m and has rank m
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A transformation matrix, T, can be used to transform Equation 3.14 into Llock

diagonal form (3)

_ A, " [ B,
Ik + 1T _ A 0 z,(kT) ¥ r(kT) (3.1G)
ek +1)T 0 Ay z7(+T) [ By
[ z,(kT)

y(kT) = [ C, Cy ] (3.17)

D’Azzo explains the steps to block diagonalize Equation 3.14 {3:663-667). Comparing

D’Azzo’s results to those that Porter obtained for the discrete plant (2:1210),

—K['R 0
A, = I+TA Ay =

Al'ZF{l]\"l-lI\’g .“111 - :‘llng_lFl
:1]' = [+ A4 Ay = B0 F

0

B, = TB() Bo =

.412F2—1
By = Bk,
C, = Co Co = | CuFJ'ATYN, C - CoF5 R
Cy =




The overall transfer function for the closed loop system is

-1
A~ A, 0 B,

0 M= Ay By

) = | oo

Co(M = A)7' By + Cp(A - Ay)™' By

To(A) + Tf(A) (3.1%)

There are three sets of eigenvalues for the asymptotic transfer function. two slow and

one fast. The first set of slow eigenvalues is
2y = {Mi— L+ TRT'E| = 0}

This set of poles is asymptotically uncontrollable because of the zero element in B;.

The second set of slow eigenvalues is both controllable and observable. This set
contains the transmission zeros of the plant augmented with the minor loop rate feedback

through the measurement matrix, M.

2y = {PMaci = Lot = Ty + TARF B | = 0}

The set of fast eigenvalues are also controllable and observable. Note that eigenvalues

obtained from A4 = B, K F, and F, B, K, (which is used below) are identical.

Zy={|A - I} + ;B2 I\y| = 0}

All three sets of poles must lie in the open left half s plane or open unit circle in the
z plane. The output consists of the fast modes containing the poles Z3 and a set of slow

modes containing the poles Z,.
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3.3 DESIGN PARAMETERS FOR THE DISCRETE FIXED-GAIN PICONTROLLER

In order to achieve a diagonal transfer function, ['(A) for an irregular plant. the
measurement matrix, M in Figure 3.1 must be chosen carefully. M should be formed with

as few non-zero elements as possible so that
Fy=Cy+ MAq, (3.19)

has full rank m and C;F; ! is diagonal.

The following steps outline the procedure to determine the form of the measurement

matrix (3, 4):

1. Form the matrix
TA%t Ay,
B* = : (3.20)

dm
Cg“‘ll A12 K
where m is the number of control inputs, ¢/ is the ith row of C; and
di=min|j:ef A A #£0,j=01, ..,n~1 (3.21)

Equation 3.21 specifies that d; is the smallest value of j for which c,TA{lAn # 0. The
permissible values of j are 0, 1,...,n—1. If all the values of j result in c:f"A{lAlg =0,

then use d; = n — 1, where n = dimension of 4;;.

o

Form F; = C; + M Ay using a general form of the matrix A = {m,,]. The clements
m,; appearing in F; are permitted nonzero values only if 5" has a non-zero clement

in a corresponding position. All other elements of M are set equal to zero.
3. Form C; F{l and set off-diagonal terms to zero if possible to ensure a diagonal matrix.

1. Ensure that F, has rank m.

For the CRCA, Equation 3.20 is formed using the parameters from ACM Entry.
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0 0 1]

000
Cyoo= 1 00

0 1 0

00 0]

[ 0 0 0
Ap = 0 0 0

| —32.1804 0 -.0119

0349 0
0 0
0 0
0 0
0 0
0
0

—.0136

oo o

0 1 0.033

[t can be verified that the form of M does not change for the different flight condi-

tions by noting the same location of non-zero elements in Ay, A2, (', and C; terms of

Appendix A.

Equation 3.20 vields the values dy = d; = d3 = dy = ds = 0. Then B, formed.

-

0
BT = 0
0

0
L

-.0136

~31.235

0
1
0
0

o o O

0

0.0349

-4

The matrix C3 in Equation 3.19 has a dimension 5 x 5. Since the dimension of 4,7 is 3 x

5. the necessary dimension of M is 5 x 3. Using M of the form

.
L
I

mua

mp2
ma2
ma3z
my2

Mmg2

mya
ma3
ma3
M43

mMsg3

~

(3.23)




the matrix £, of Equation 3.19 is

[ 0349 — .0186my3 myy — 31.233my3 0 myq .035my, ]
—.0136mq3 myy — 31.235my3 1 mag 035m0
by, = —.0186may my —31.235maz 0 map  .033ma, (4.21)
—.0136my3 my —31.233my3 0 my, 035m 2
] —.0136ms3 Mmsy — 31.235ms3 0 msy 1+ .035ms, ]

The assignable elements of F, are permitted non-zero values only if B* has a nonzero
eleinent in the same position. Thus. it is required that ma3 = ma33 = my3 = ms3 = my, =

Myl = Mgy = My = May = map = msy = 0. This leaves an [ matrix of the form

[ 0349 — 0186Gnyy 3 myy —31.235mya 0 0 v ]
0 0 1 0 0
Fr = 0 may 0 0 0 (3.25)
0 0 0 myy, .035my,
| 0 0 0 0 1 ]

The matrix (', F;' must be diagonal. therefore the third element in the first row of
Equation 3.26. my; = 31.235m;3. It is also apparent from the first and third terms ol the
first row that setting m;3 = 0 ensures that the matrix product is diagonal and insensitive
to variation of the measurement matrix values. With non-zero values of m3; and my.
rank of F3 is m. Since the measurement matrix implemented in the computer simulations
has only two non-zero elements mq; and my,, a reduced 5 x 2 M matrix is used since the

third column of M contains only zeros.

[ 9319 0 L290m;=31235mi) g ) ]
U349~ 0186m 3 -(.0U349~-.0136my)my,
0 1 0 0 0
CyF7' = 0 0 0 00 (3.26)
0 0 0 0 0
0 0 0 0 1
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The proportional path gain matrix, K’} in Figure 3.1 is selected to make the fast

transfer function, ['s(A) of Equation 3.18 diagonal. Therefore,
129:07 (CE=I 13.27)
where ¥ is a diagonal matrix of elements o;. So
KNy = (FBy)7 'S (13.2%)

and

1\-2 = —-/\0[\'1 (3.29)

Ap is the ratio of integral to proportional control.

This form of M and the appropriate choice of L'y only ensure that the {ast transter
function. ['s(A) of Equation 3.13 is diagonal. All of the terms of [';(A) must also be diagunal

to ensure an overall diagonal transfer function [(A).

The elements of the ¥ matrix are selected by a trial aud error process. When a
diagonal T(A) has been achieved, each element of the ¥ matrix. o, fine tunes the ith

input’s affect on the ith output.

3.4 DISCRETE STEP RESPONSE PI CONTROLLER THEORY AND DESIGN

Porter has developed a technique that can be used to design a control systein for
a plant when the mathematical equations are not known (10, 8). The method has been
developed for a regular and asymptotically stable plants (where all open loop eigenvalues
are in the open unit circle of the z plane) where the steady state trausfer function, G0},
has rank m (no transmission zeros at the origin) and F~, the plant decouplir.g matrix. has

full rank m.
clTAd‘ B
F* = : (3.30)

c,l;.»ld"‘ B
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m is the number of control inputs, ¢/ is the ith row of C and

di =minj:cTAIB£0,j=0.1.....n~ 1] (3.31)

bl

An effort has been made in Hammond’s thesis to extend this desicr to the case of
an irregular and unstable plant. The extension of the step response method is contined

in this thesis effort.

The discretized plant Equations 3.4, 3.7 are repeated and Equation 3.3 is used to

form

zk+ )T = ®z(kT)+ ¥u(kT)
Ak + )T = :(kT)+ Te(kT)
= (kT)+ Tr(kT) - Tw(kT)

= (kT)+Tr(kT)-TFz(kT)

The control law is

w(kT) = T [Kye(kT) + Kp2(kT)) (332,

Note that Figure 3.1 is applicable,if the gain factor is changed to T for this desian.

The closed loop equation can now be expressed as

r{k+ )T (@ —TOYRKN \F)z(kT)+ TYNz(kTY+ TV LK r(kT)

Il

—TFz(kT) + 2(kT) + Tr(kT)

H(k+ )T

The block diagonalization depicted in Equations 3.16 and 3.17 is performed and the

following two sets of eigenvalues result. The slow set is determined from
Zy={{M.~ 1, +TA| =0}

and the fast et is

z, = {[A[, — I+ T2.4"‘BI\'2‘ =0}
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The step response method is designed around two plant responses, H(T) and

G(0) = H(x). The response with a step input at the first sampling time, T, is
H(T)=CAY AT~ I)B
Referencing Equation 3.11, H(T) can be approximated as T — 0 by

H(T)=CA™'ATB =TCB (3.

e
—

G(s)=C(sI, - A)"'B

and as s — 0,

G(0)= -CA™'B (3.3

The proportional and integral path gain matricies are given as (10, 9. ?)
Ky = HT)™'S (3.35)

and

K, = G(0)"'TI (3.36)

where T is a diagonal matrix as defined in Equation 3.27 and ['IT is another diagonal matrix
of arbitrary values which are determined by trial and error through computer simulations.

Using the A, B, aad C matricies for the representative flight condition of Table 2.5,

the resulting F* and G(0) matricies have full rank of m = 5.

If the plant equations are known in advance, the approximations of Equations 3.33
and 3.34 can be used. Otherwise, off line, open loop tests could be performed on the plant

to determine H(T) and G(0) for a known input.
The aircraft equations

z = Az + Bu

and

y=Cr




can be expressed in terms of ARMA coefficients. The algoritlim developed by Velez (11)

was vsed to generate the ARMA coefficients for the model.
yATY+ Ayytk = DT + -+ Avy(k = V)T = Biu(k = )T +---+ Byu(k = N)T (3.37)
[t can be seen from the equation above that
H(T)= B
and since, y(0)=0,

GO)=(I+ A 4+ +Av) (Bl + -+ By)

3.5 ADAPTIVE STEP RESPONSE PI CONTROLLER

There are many parameter adaptive algorithms from whicl the designer can choose.
Hammond chose to use a least squares method since “It is conceptually simple and exhibits
statistical properties that are as good as those of maximum likelihood method for most

practical situations.” (4:3-12)

The parameter that is to be estimated is the ARMA coefficient representation of rhe
plant, or the vector #. The ARMA model representation of Equation 3.37 is used and the

ARMA output Equations 2.6., 2.7. and 2.8 are repeated here.

y(kT) = 8T (kT)o(kT)
where for the reduced second order ARMA model of the CRCA,

9T (kT) (AT AT BT pI|T

kT = [=yTk =0T =yl k=27 uT(h - )T Tk =2)7)"
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Hammond used the following equations to implement the least squares estimate of 8

(1:3-13).

Blk+1) = B(k)+ Pl =k + v+ Diy(+1) =Tk 4 1)8(k)] (338
Pk+1) = P(k)= P(k)z(k+ Dy(k+ )zl (k+ 1)P(k) (3.39)
Hk+1) = L (3.10)

(¢ + 2T (k + 1)P(k)z(k + 1)]

where z(k + 1) is Hammond's notation in the adaptive algorithm for ¢(k + 1), P(k) is the

covariance matrix, and a, is a weighting factor = 1 for this effori.

Calculation of P(k+1) in Equation 3.39 can be changed by the introduction of a for-
getting factor, A (Hammond used v as the forgetting factor, but that nocation is confusing

since there is another term v(k + 1) used in the Equations 3.38 and 3.39).

Plk+1)= i[P(k) = P(k)z(k + )y(k + D)xT(k + 1) P(k))] (3.41)
and v(k + 1) of Equation 3.40 now becomes

1 »
TR+ ) = T T T DPR)2(h T 1)] (3.42)

When the forgetting factor is incorporated in simulations, Equations 3.38, 3.41, and

3.42 are used to update the changing ARMA coefficients.

This chapter details the mathematical development of Porter’s discrete PI control
laws; discrete PI, step response, and parameter adaptive based upon an ARMA model.
Procedures are outlined for determination of the controller gain matrices K’} and K, based
upon known plant matrices or step responses. The chapter concludes with a presentation of
the recursive least squares parameter estimation algorithm to be used. Chapter 4 contains

the results from the discrete PI controller.
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[V. DISCRETE PI CONTROLLER

.1 TRANSFER FUNCTION ANALYSIS

In addition to the plant meeting the conditions listed in Section 3.2, the steady state
control surface deflections necessary to perform each maneuver in every flight condition
{including failures) must be examinea. If the amount of control surface deflection required
in steady state is larger than the position limits listed in Table 2.6, then the maneuver
cannot be performed for that particular flight condition. The control surface rate and
position limits cannot be exceeded at any time in the simulations or the responses will
become nonlinear when limit circuits are encountered. The steady state surface deflections
determined for each combination of maneuvers will be used as a guide to determine the

feasibility of maneuver performance.

The output relationship shown below is used to determine the steady state surface

deflections (inputs) required to perform each maneuver.
y(s) = G(s)u(s)

Applying the final value theorem, where u,, is the magnitude of the step input and y,, is

the magnitude of the desired system output,
Ugy = G(O)—lyu (41)

where G(0) is defined in Equation 3.34, which is repeated below, and y,, = r(t) for a

tracking system.

G(0)= -CA~'B
The five maneuvers and their associated input commands are

1. pitch rate tracking — q=2°/sec for 3 sec and zero thereafter. The pitch rate command

is generated by ramping 6 to 6° over 3 seconds.
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2. coordinated turn - 45° roll angle (¢) and yaw rate (r) determined from Equation 4.2

(4:4-7).
g

where,

deg
sec

)-2

sin()57.3

g = the gravitational constant (32.174 ft/sec?)

V = the forward velocity of the aircraft

¢ = the desired bank angle

3. sideslip tracking - 2° of sideslip angle (3)

4. flat turn - 1°/sec yaw rate (r) with zero roll angle ()

5. banked turn - only roll angle (¢) commanded

deg

rad

(4.2)

Table 4.1 gives the corresponding yaw rate (r) for each of the flight conditions con-

sidered in this thesis when the bank angle (¢) is equal to 45 degrees.

Table 4.1. rema - 45° Bank Angle

Flight Condition | Velocity | Gravity || Yaw Rate
ft/sec | ft/sec® | deg/sec
ACM Entry I 8950 32.17 1.457
ACM Exit 263.0 | 32.17 4.956
TF/TA 1004.9 | 32.17 1.297

The output vectors for each maneuver, y,,, consist of the following five outputs and

the units are expressed in ft/sec for the velocity, radians for the angles, and rad/sec for

the yaw rate,

forward velocity

sideslip angle

pitch angle

bank angle

yaw rate
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and the input vector, u,,, consists of the five control surface inputs, where the units are

expressed in degrees.

64 = left canard

0., = right canard

8ier = left trailing edge
dte, = right trailing edge
brudg = rudder

The steady state output vector for a 45° coordinated turn in ACM Entry is:

Yss =

and from Equation 4.1, the steady state surface deflections are:

Uys =

0.0000 ft/sec
0.0000 rad

0.1047 rad

-1.4411
1.4411
0.4767

-0.4767

-2.6545

0.0000 rad

deg
deg
deg
deg
deg

0.0000 rad/sec ]

(4.3)

(4.4)

The necessary surface deflections to perform each maneuver in all flight conditions

considered are listed in Tables 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7. The G(0) for 25% loss of

rudder in ACM Entry is not invertible.
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Table 4.2. Steady State Control Inputs - Pitch Rate Tracking

Flight Condition S ber tel Ster brud
(deg) (deg) (deg) (deg) | (deg)
ACMENTRY 1.2100 1.2100 1.3836 1.3836 | 0.0000
ACM30TL 2.6967 2.7687 5.4502 3.1944 | 0.0000
ACM50CL -16.3074 -3.6573 -4.6384 -6.0154 | -3.6573
ACM25RL N/A N/A N/A N/A| N/A
ACMEXIT -16.4536 | -14.4260 | -31.9885 | -28.6533 | -3.0725
TFTA 1.0384 1.1469 1.6532 1.5927 | -0.0945
TFTA30TL 0.8025 0.7998 2.0189 1.1727 { -0.0013
TFTA50CL 2.2060 1.1090 1.8015 1.7633 | 0.0060
TFTA25RL -2.1867 3.2095 1.0801 1.3309 | 5.3962

where,

ACMENTRY = ACM Entry (nominal flight condition)

ACMB30TL = 30% loss of effectiveness of the left trailing edge - ACM Entry
ACMS50CL = 50% loss of effectiveness of the left canard - ACM Entry
ACMZ25RL = 25% loss of effectiveness of the rudder - ACM Entry
ACMEXIT = ACM Exit flight condition

TFTA = TF/TA flight condition

TFTA30TL = 30% loss of effectiveness of the left trailing edge - TF/TA
TFTAS0CL = 50% loss of effectiveness of the left canard - TF/TA
TFTA25RL = 25% loss of effectiveness of the rudder - TF/TA




Table 4.3. Steady State Control Inputs - 45° Coordinated Turn

Flight Condition | 6y b Brer brer brud
(deg) | (deg) (deg) (deg) | (deg)
ACMENTRY -1.4411 1.4411 0.4767 | -0.4767 | -2.6545
ACM30TL -1.6473 | 1.5466 | 0.7891 | -0.5858 | -2.8283
ACM50CL 0.8474 1.6176 1.1141 0.7271 | -1.2235
ACM25RL N/A| N/A N/A| N/A| N/A
ACMEXIT 46.8304 | 42.2510 | 100.3224 | 90.4552 | 7.7426
TFTA -0.3664 0.3664 0.2181 | -0.2181 | -0.7977
TFTA30TL -0.4190 0.3684 0.3435 | -0.2782 | -0.8498
TFTA50CL -0.9488 0.1031 -0.1306 | -0.4729 | -0.6676
TFTA25RL -1.9385 1.9385 0.2696 | -0.2696 | 1.3886

Table 4.4. Steady State Control Inputs - Sideslip Tracking

Flight Condition bal ber Btel bter brud
(deg) | (deg) | (deg) | (deg) | (deg)
ACMENTRY 1.4671 | -1.4671 | 0.2431 | -0.2431 | 4.2623
ACM30TL 0.8361 | -0.9397 | 0.8124 | -0.6032 | -3.4561
ACMS50CL -0.3633 | -0.6934 | 0.1201 | -0.9094 | 2.1692
ACM25RL N/A N/A N/A N/A N/A
ACMEXIT 0.9444 | -0.8711 | 1.6158 | -1.4159 { 1.2350
TFTA 1.0973 | -1.0973 | 0.2444 | -0.2444 | 3.5678
TFTA30TL 0.9310 | -0.9946 | 0.4317 | -0.3497 | 3.3312
TFTAS50CL 2.9287 | -0.3182 | 1.3314 | 0.5312 | 3.0699
TFTA25RL 3.5708 | -3.5708 | 0.2099 | -0.2099 | 0.8878
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Table 4.5. Steady State Control Inputs - Flat Turn

Flight Condition b Oer Otel Ster brud
(deg) | (deg) | (deg) | (deg) | (deg)
ACMENTRY 9.3284 | -9.3284 | -3.0266 | 3.0266 | 15.7374
ACM30TL 11.0335 | -10.3688 | -5.2088 | 3.8672 | 17.4679
ACM50CL -5.6600 | -10.8046 | -7.3813 | -4.9166 | 6.6545
ACM25RL N/A N/A N/A N/A N/A
ACMEXIT 7.4212 | -6.8452 | -5.1607 | 6.7319 | 15.2521
TFTA 2.9565 -2.9565 | -1.6359 | 1.6359 5.0267
TFTA30TL 3.4114 -3.0262 | -2.6129 | 2.1166 5.5084
TFTAS0CL 7.7362 | -0.8407 | 1.1951 | 3.7252 4.0173
TFTA25RL 13.2925 | -13.2925 | -1.8054 | 1.8054 | -9.1315

Table 4.6. Steady State Control Inputs - 45° Banked Turn

Flight Condition et ber Stel Oter 8rud
(deg) (deg) (deg) (deg) (deg)
ACMENTRY -15.0300 | 15.0300 4.8857 | -4.8857 | -25.5798
ACM30TL -17.7202 | 16.6512 8.3768 | -6.2193 | -28.2744
ACM50CL 9.0926 | 17.3571 11.8667 7.8892 | -10.9173
ACM25RL N/A| N/A N/A| N/A| N/A
ACMEXIT 36.0196 | 52.2227 | 107.8402 | 80.6486 | -14.4756
TFTA -4.2022 | 4.2022 2.3406 | -2.3406 | -7.3194
TFTA30TL -4.8451 4.2947 3.7335 | -3.0243 -7.9965
TFTAS50CL -10.9859 1.1938 -1.6811 | -5.3060 | -5.8797
TFTA25RL -19.1844 | 19.1844 2.6120 | -2.6120 | 13.2360




Table 4.7. Steady State Control Inputs - 15° Banked Turn

Flight Condition del Ser bel Ster $rud
(deg) (deg) | (deg) | (deg) (deg)
ACMENTRY -10.0181 | 10.0181 3.2565 | -3.2565 | -17.0499
ACM30TL -11.8112 | 11.0987 5.5835 | -4.1454 | -18.8460
ACM50CL 6.0605 | 11.5692 7.9096 5.2585 -7.2738
ACM25RL N/A| N/A| N/A| N/A N/A
ACMEXIT 24.0085 | 34.8085 | 71.8797 | 53.7554 -9.6486
TFTA -2.8009 2.8009 1.5601 | -1.5601 -4.8787
TFTA30TL -3.2294 2.8626 2.4885 | -2.0158 -5.3300
TFTAS0CL -7.3225 0.7957 | -1.1205 | -3.5367 -3.9190
TFTA25RL -12.7871 | 12.7871 1.7410 | -1.7410 8.8223

Comparison between the necessary steady state control surface deflections to perform
the maneuvers listed in Tables 4.2, through 4.7 with the control surface limitations listed in

Table 4.8 determine which maneuvers can possibly be performed in each flight condition.

Table 4.8. Control Surface Position and Rate Limits

Surface Position Limit | Rate Limit
(deg) (deg/sec)
Canards +60 -30 + 100
Trailing Edges | +30 -30 + 100
Rudder +20 -20 + 100

Comparison between Tables 4.2 - 4.7 and Table 4.8 yields the fact that only the
sideslip tracking and flat turn maneuvers can be performed in ACM Exit. The magnitude
of the banked turn must be reduced to 15° in ACM Entry, and the results for the 25%

rudder loss conditions are questionable.

4.2 TIME RESPONSES

The time responses obtained include the two maneuvers investigated by Hammond,
pitch rate tracking and the coordinated turn, plus an additional three maneuvers listed
in Section 4.1. All maneuvers are investigated in all failure conditions possible, including

the new case of 25% rudder loss. A single set of design parameters, g;, ma;, M4z, and Ag
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from Equations 3.28, 3.23, and 3.29 are used for all tested flight conditions. An attempt is
made to obtain a universal set of gains that will stabilize the aircraft in all combinations
of maneuvers and failure situations. The values of the design parameters are chosen to
optimize the time responses and to try to keep all individual controller gain values below

20. The gain values are minimized in order to reduce the magnification of noise signals.

The command inputs used are ramped step inputs since it is physically unrealizable
for a pilot to generate a pure step input. The following approximation has been used

(4:5-14)
position limit _ 60°
rate limit ~ 100°/sec

ramp time =

where the largest allowable surface deflection for the canard is used. A ramp time of 0.5 sec
is used for all inputs to simplify the MATRIX x simulations. In addition to the ramping,
Hammond also inserted a prefilter to remove high frequency spikes. The prefilter is selected
to limit the bandwidth to under 10 rad/sec which does not adversely affecting the speed
of systeni response.

10
ter = ———
Prefilter T

All of the time responses collected for the discrete PI design used the following values

of o;, ma1, myz, and Ag in Equations 3.28 and 3.29:

op = 0.2 mz; = 0.1
o, = 0.05 my = 0.1
g3 = 0.5 Ao = 0.3
gy = 03
os = 0.5

Appendix C contains the K; and K; matrices for each flight condition and Table 4.9
shows the stability of results for all flight conditions using the design parameters listed
above. The time responses have been generated using the input commands shown in
Figures 4.1 through 4.5. The magnitudes of the input commands (displayed in degrees)
are shown for ACM Entry. The yaw rate differs on the coordinated turn input for TFTA
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{see Table 4.1), and the banked turn can be performed at 45° in TFTA.

Table 4.9. Stability Analysis Using discrete PI design parameters

Flight Stable With Requires Gain

Condition Universal Gain Change
ACMENTRY X

ACM30TL X

ACM50CL X

ACM25RL X

ACMEXIT X

TFTA X

TFTA30TL X

TFTA50CL X

TFTA25RL X

(1) = The flat turn maneuver is not stable for the universal gain.

The four responses in Figures 4.1 through 4.5 are defined as follows
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The resulting time responses for simulations in ACM Entry, ACM Exit, and
TFTA follow and sample surface deflections and rates are included only for the first ma-
neuver, pitch rate tracking. Limiting devices are included in the simulation to keep the
surface deflections and rates within the limits defined in Table 4.8. Once the surface de-
flection and rate limits are exceeded, the limiting devices are saturared and the sinnlation

becomes nonlinear and this normally drives the time responses unstable.

The four responses on each of the next plots are again defined as [ollows
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Time responses for a selected maneuver, sideslip tracking, are shown for all of the
falure conditions in ACM Entry and TFTA. The simulations were performed using
the fixed Ay and A’ values calculated for the non-failed ACM Entry and TFTA flight
cowditions (see Appendix C). From Figures 4.22 and 4.25, it can be seen that the sideslip

rracking task cannot be accomplished for the 25% rudder loss in ACM Entry or TFTA.
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4-21




£

5 L/ -
§ i \\ﬂ-‘
o P
\tqi O T
- L \«\v"\"';ég\ P S it Ittt it bl Bl PR B
= r o~ R Ve
k=) - IR
2 \ . — ‘ DL S
::2.. | l/‘ IR et PN CNE —_———— e S
3 L 4
_4 b4 - " ‘V/: R " LL. N P s " N N . )
0 2 4 6 8 10 12 14 16 18 20
seconds
Figure 4.21. Discrete Controller sideslip maneuver response in ACM50CT
b 4
2 -5008+14
g :
o -
< -100E+15
Y L
g [
£ -150£+15
Q -
E -
£ -
2 -2.00E+15
3 i
L
SDE0F418 e | M N DU SR RN B S I
0 2 4 6 8 10 12 14 16 18 20
seconds

Figure 4.22. Discrete Controller sideslip maneuver response in ACM25RL

4-22




betatheta,phir (deg.deq per sed)

beto theta phir (deg.deq per sec)

[N}

5 T
z |
7.: ‘ //»—-—’T
g et
'UL- /
E /
1 L ////,
5 b //////
N Sl st M ol SR S N N
5: - i N N — NP .
0 2 4 6 8 10 12 14 16 18 20
seconds

Figure 4.23. Discrete Controller sideslip maneuver response in T T AU 'L

2
L T —
SL /
1L e
-
r-
e 17//1
e
F
0 4 R O A A A
v }-\\\' ‘/1'/"’" ------------- o P e
t\.‘\(/ [ [ DU S
c v \\‘L ______ b - . l . . A
0 Z 4 b 8 10 12 14 16 18 20
seconds

Figure 4.24. Discrete Contrcller sideslip maneuver response in TFTAS0CL

4-23




beto,theta,phir (deg,deg per sec)

130000 T T

150000 —

120000 st

90000 .

50000 e

30000 -~

0 " S SRy ISP Lo SR PP R

_30000 — N GRS S NN S U U BT RS S R

seconds

Figure 4.25. Discrete Controller sideslip maneuver response in T TA25RL

4-24




{3 FREQUENCY ANALYSIS

Conventional frequency analysis of a MIMO system is ditficult, but is made easier
when the outputs are relatively decoupled, as is the case with this design method. Since the
outputs are decoupled, only the diagonal transfer fuction pairs are considered, i.e, 3/3.mq.
“For siatically unstable aircraft, the military specification MIL -F -9490D, specifies the
gain margin to be £ 6.0 dB and the phase margin to be £ 45 degrees. For these tvpes of
aircraft the system may have a low and high frequency gain margin. At the low frequency
crossover frequency of -180 degrees the gain margin should be smaller than -6.0 dB. At the
high frequency crossover of -180 degrees the gain margin should be greater than +6.0 dB
(£:4-17).7 The Nichols plots of 8/6.mq4 in Figures 4.28 and 4.32, illustrate the high and low

gain margin characteristics of the unstable CRCA.

The aircraft/controller model simulated in MATRIX x is a hybrid model consisting of
a continuous plant with a discrete controller. In order to conduct a frequency analysis, an
equivalent discrete model of the overall system must be generated. This is accomplished by
treating the controller as a continuous unit and then transforming the “continuous system™
to the w/ plane via a Hofmann transformation. The Hofmann transformation used in this

thesis was obtained from Hammond’s computer files (4:4-29).

) = [1_§<4(3)T>2+125(A(;)T)4 31175(4<;> ”A(s)
vy = {1 H(AY 2 (Aa) - 2 ()] ) s - £
H(w'y = C(s)

ot = S (1§ (Y 2 (A2) - (44 e

According to Houpis and Lamont (5), quantities in the ws plane can be handled like

continuous quantities and the z plane roots can be found from the following equation.

Tw +2 .
z= —-——-——_Twl 72 (1.5)
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Selected Nichols and Bode diagrams are included for both the healthy ACM Entry
and TFTA flight conditions. Figures 4.26 through 4.33 show the open loop frequency
characteristics of the discrete PI controller design. The closed loop Bode plots show the
handwidth of the system with the control law incorporated for the two selected outputs,
in Figures 4.34 through 4.37. The bandwidth characteristics of the healthy aircraft design

are included in Table 4.10 and the w/ plane roots are listed in Table 4.11.

Table 4.10. Bandwidth of discrete PI design

[ output ] ACM Entry [ TFTA |

v 722 | 6.89
3 0.30 | 0.17
8 9.77 | 7.22
é 1023 | 7.74
r 9.54 | 8.90

Table 4.11. wr plane roots for ACM Entry and TFTA

| ACM ENTRY | TFTA B
-0.1119 +7 0.1536 | -0.2266 +7 0.1380
-0.2960 -0.3017
-0.3014 -0.3020
-0.3055 -0.3074
-0.4947 -0.7228
-2.0425 -3.6890
-8.2710 -9.9482 (5)

-9.9482 (5) -11.0842 +) 5.1379

-7.4002 £ 10.4555 | -13.1893
-14.7533 +7 13.2824 | 13.1976
-38.8237 -29.2678 +) 35.2494
-40.7383 £ 25.8551 | -16.4291 £ 54.7333
-36.6469 £ 33.5002 | -57.4723
-50.2105 £ 29.3661 | -51.5347 13 30.4394
-52.7656 t7 30.7213 | -61.4256
-58.1497 £7 31.3455 | -57.9341 £ 31.3275
-14.8236 £7 74.5446
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The phase and gain margins for ACM Entry and TFTA are listed in Table 4.12.

Table 4.12. Gain and Phase Margins - Discrete PI Design

ACM Entry

Transfer | Gain Margin We Phase Wy

Function (dB) (rad/sec) | Margin | (rad/sec)
Low | High | Low | High | (deg)
Vv (2 | 14.26 | (2) | 70.62 ‘ 74.64 8.07
3 (2) { 48.54 (2) | 50.54 (1) (1)
0 -25.22 | 12.65 | 2.48 | 64.44 39.66 21.51
® @ | 17.07] (2)|64.34 ! 44.80 14.47
T (2) | 8.60 {2) { 50.84 52.45 20.10
TF/TA

Transfer | Gain Margin We Phase we

Function (dB) (rad/sec) | Margin | (rad/sec)
Low | High | Low | High | (deg)

1% -39.18 | 16.51 | 0.24 | 50.40 70.61 7.21
3 (2) | 48.54 (2) { 50.69 (1) (1)
] -65.15 | 6.63 | 0.05 | 43.22 43.75 22.38
ol (2) | 18.66 (2) | 70.68 57.91 13.80
r (2) | 8.73 (2) | 51.56 ; 126.45 0.55
180.03 0.74
54.45 20.35

(1) = Response is always less than 0 dB
(2) = No low frequency gain margin (phase > -180 degrees)

This chapter contains a listing of the steady state control surface deflections to per-
form each maneuver in the chosen flight conditions. The design parameters and time
responses for the discrete PI controller are presented for non failure and single failure
conditions. Frequency analysis of the discrete design is presented for the non failed cases

ACM Entry and TFTA. Chapter 5 contains the time responses for the step response

controller and adaptive algorithm.
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V. STEP RESPONSE METHOD AND ADAPTIVE RESULTS

5.1 STEP RESPONSE METHOD

The time responses collected for the step response method use the same inputs dis-

played in Figures 4.1 through 4.5 and the following values of o;, ma3;, m42, and 7, in

Equations 3.35 and 3.36.

o = 0.1
o = 0.015
g3 = 0.01
og = 0.05
g5 = 0.075
m3; = 0.1

The w’ plane roots are calculated for the step response

Tm
RE)
173
YTy
IS

My2

= 0.2
= 0.2
= 0.2
= 0.2
= 0.2
= 0.1

method in the same fashion

as discussed for the discrete PI controller in Section 4.3 and are included ir Appendix C

along with the fixed gain values of K, and K; used in the simulations for the no failure

cases ACM Entry and TFTA. The computer simulations are conducted with a gain of

1. The gain factor in the control law of Equation 3.32, T, is already incorporated in the

gain matrices listed in Appendix C.

Table 5.1 shows the stability results for all the possible maneuvers (see Section 4.1)

in the various flight conditions for the step response method design parameters. The same

time responses are shown here as have been presented for the discrete PI controller. The

four responses on each plot are distinguished according to the same legend used in Chapter

4.
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(1) = The responses are slightly divergent for ACM Exit over the 20 second simulation

time.

(2) = All results have a distinct periodic oscillation and slowly diverge over the simulation

duration.

Table 5.1. Stability Analysis Using step response design parameters

Flight Stable With Requires Gain
Condition Universal Gain Change
ACMENTRY X
ACM30TL X
ACM50CL X
ACM25RL X
ACMEXIT X m
TFTA X
TFTA30TL X
TFTA50CL X (@
TFTA25RL X
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5.2 ADAPTIVE CONTROLLER

When a single set of design parameters for a fixed-gain design do not adequately
stabilize and control the aircraft, either gain scheduling or an adaptive algorithm can be
used. Hammond’s adaptive algorithm, which is built on the step response method, is

examined.

Since the aircraft plant can be represented by a discrete difference equation
for a given sampling time T, control law gains are calculated by manipulating
the coefficients of this difference equation. By measuring input and output
data, on-line, the coeflicients that constitute the difference equation itself can
be updated continuously and new PI controller gains calculated each time the
measurements are taken. Predicting the new plant parameters allows gain
calculations to be accurate and appropriate for the new flight condition or
configuration. (4:6-1)

A recursive least squares (RLS) algorithm is used to update the ARMA coefficients each

sampling period which are in turn used to determine the controller gain matrices.

The RLS algorithm is written in FORTRAN executable code and accessed each
sample period in the MATRIX x simulation. The algorithm is initialized with a covariance
matrix P(0) of I and the matrix containing the past output and input values, z(0)= 0.
ARMA coefficients for either the non-failed ACM Entry or TFTA flight conditions are
used for the first two sampling periods, 0.05 seconds, to ensure that the z(k + 1) matrix
is fully populated before the ARMA coefficients in (k + 1) are estimated. The rate of
calculation of the varying ARMA coefficients is controlled by the choice of forgetting factor,
A. The applicable RLS Equations 3.38, 3.41, and 3.42 are repeated here with the weighting

factor, ay=1.

Ok +1) = 0(k)+ P(k)z(k+ D)y(k+ Dy(k+1) = zT(k + 1)8(k)]
P(k+1) = %wuy_Pwnu+1na+1pﬂk+qun
vk+1) = L

Mo + 27(k + 1) P(k)z(k + 1)]

The source code for the adaptive algorithm is listed in Appendix D.
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The adaptive controller is initially evaluated by analyzing the results of all of the
manenvers performed in ACM Entry and TFTA with no failures. The lorgetting factor.
A is set to one and the ARMA coefficicnts are monitored at the onset and upon completion
of the maneuvers. The ARMA coeflicients do not change when the adaptive algorithm
i= run. which is the expected result. The outputs are expected to closely resemble those
obtained from the step response method, since the adaptive simulations start with tle same
ARMA plant models used in the step response simulations. The following time responses,
liowever, do not show “he desired decoupling of outputs that has been obtained from botl:

thie discrete Pl and step response design methods.

The four responses on each of the next plots are defined as follows
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Figure 5.21. Adaptive sideslip tracking response in ACMN Entry
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Figure 5.23. Adaptive banked turn response in ACM Entry
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Adaptive simulations are now performed with a single failure occurring at citlor
tie beginning of the simulation or at two seconds. The ARMA values that are rewd
inte M ATRIX y to initialize the # vector are for non-failed cases. The simulations are
performed for a variety of A values in the single failure cases of 30% left trailing edge
loss and 507 left canard loss for the sideslip tracking and flat turn mancuvers. Only the
responses generated in the failure condition ACM30TL are presented since the other cises
produced divergent responses. For the two maneuvers tested in the nwo ditforent Giture

onsers, the responses obtained from a A =.90 are the most stable. The responses

e
run for 30 seconds for the case of failure introduction at two seconds in order to allow 1he
responses to cettle.

The four responses on each plots are defined according to the following leeend.
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The adaptive controller is initially evaluated by analyzing the results of all of the
waneuvers performed in ACM Entry and TFTA with no failures. The foreetting facton
\ s <ot to one and the ARMA coeflicients are monitorad at the ouset and upon corupletion
of the maneuvers. The ARMA coefficients do not change when the adaptive aleorithn
i~ run. which is the expected result. The outputs are expected to closely resemble thoae
obtained from the step response method, since the adaptive simulations start with the same
ARMA plant models used 1n the step response simulations. The following time responses.
however, do not show the desired decoupling of outputs that has been obtained from Lotk

rhe discrete PI and step response design methods.

The four responses on each of the next plots are defined as tollows
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Figure 5.19. Adaptive pitch rate tracking response in ACM FEntry
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Figure 5.25. Adaptive coordinated turn response in TFTA
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Adaptive simulations are now performed with a single failure occurring ot el
Ui beeinning of the simulation or at two seconds. The ARMA valnes thar wre oad
into M ATRIN ¢ to initialize the § vector are for non-failed cases. The simulations ave
performed for a variety of A values in the single failure cases of 30% left trailing vilee
lo<x and 50% left canard loss for the sideslip tracking and flat turn manenvers, Only 1l
responses generated in the failure condition ACM30TL are presented =ince the other coees

Pt

proditeed divergent respouses. For the two maneuvers tested in the two diberen G

ot~ the responses obtained from a A =.90 are the most stable. The vesponses o
v for 30 seconds for the case of failure introduction at two seconds i order 1o ahione e

responses to settle.

The four responses on each plots are defined according to the following leernd.
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This chapter contains the design parameters and time responses for the step response

PI controller and results of the adaptive algorithm. The results of all work in this thesis

are analvzed in Chapter 6.




VI. CONCLUSIONS AND RECOMAMENDATIONS

6.1 SUMMARY

6.1.1 DISCRETE PI CONTROLLER The time domain and frequency results ob-
tained for the discrete PI controller, presented in Chapter 4, show that the outputs are
inceed highly decoupled. The velocity results are not plotted in the same figurec as the
other four outputs because the 180°/r radian conversion fartor is not applicable. The
velocity responses are monitored and never peaked above 2 ft/sec, which is well within
an acceptable range of variation. The time responses for the non failed flight conditions
show that the design is very robust. The bandwidth of the system was increased by a
factor of 100 over the previous design and is now just under 10 rad/sec for most of the
five input/output pairs. The phase an< gain margins specified by MIL - F - 9490D are
met in 2lmost all inctances. The goal of determining one set of design parameters that
can be used to determine fixed controller gains for all three flight conditions are met and
robust results are obtained for ACM Entry, TFTA, and ACM Exit. An effort is made
to limit the values of the individual elements in the K; and K matrices. Examination
of Appendix C demonstrates that the ACM Entry and TFTA gains are in a reasnnable
range and only a few of the elements in the ACM Exit gain matrices are larger than
desired. The extension of the fixed-gain design to the cases of single failure conditions
is fairly successful in that for three of the six failure conditions, the aircraft Joes remain
stable and perform the maneuver with some degree of flying qualities intact. However,
some type of gain scheduling scheme or adaptive control is deemed necessary by the fart

that three failure condition= yield unstable responses.

6.1.2 STEP RESPONSE METHOD PI The step response method PI controller
time domain results show the same degree of stability and decoupling between outputs,
using one set of design parameters, as are obtained from the discrete PI controller. The
step response method shows two improvements over the discrete PI controller design; the
3 undershoot in the flat turn is reduced by approximately one third in ACM Entry
and TFTA, and the flat turn can now be successfully performed in ACMB30TL. The

goal of obtaining individual gain elements of less than 20 is not possible in this method
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and the step response controller can only stabilize two of the six single failure conditions.

Examination of the w’ roots listed in Appendix C also shows that all roots are not in the

LHP.

6.1.3 ADAPTIVE CONTROLLER The results of the adaptive controller are not
all as expected. The simulations performed for the no failure cases show much larger
© outputs in the sideslip tracking responses and slightly larger ¢ responses in the flat
turn maneuver than are in the step response method time responses. This result occurs
even though the ARMA coefficients are invariant. This characteristic of the ¢ output
undoubtedly carries over into the single control surface failure simulations. The steady
state values of the adaptive outputs are, however, very close to the steady state step

response outputs.

Hammond had worked with the coordinated turn in ACMB30TL, so two different
maneuvers in two single failure conditions are attempted. However, the responses can not
be stabilized in ACMSOCL, TFTA30TL, and TFTAS0CL. It is interesting to note that
it is the 8 response which is consistently divergent in the TFTA failure cases. The steady
state outputs for the two sets of failure onsets are reasonably decoupled at the completion

of the simulation.

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH

There are many areas that can be examined using Porter’s control law techniqu<: on
the CRCA. The first of which are areas of immediate interest and deal with the parameter

adaptive algorithm.

1. Determine why there are differences between the sideslip tracking and flat turn ma-

neuvers obtained from the step response PI method and adaptive simulations.

2. Stabilize the adaptive simulations in the two failure conditions attempted in this

thesis.

3. Assess the effects noise in the output measurements have on the fixed-gain and adap-

tive designs.
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4. Use non-linear aircraft equations to perform simulations with the design parameters

determined from the linear point designs and compare the results.

5. Investigate the proportional plus integral plus derivative (PID) control law on the
same set of maneuvers and failure conditions to remove the slow modes of the time

responses.

6. Compare the results obtained from the PI design techniques to those obtained using

the PID control law.




Appendix A. AIRCRAFT STATE SPACE MODELS

The aircraft models used in the MATRIX x simulation are listed on the following

pages.
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Table A.1. ACM Entry Matrices - No Failures

© 0000 .0000
0000 0000
~32.1804 0000
~ —1.0634 .0000
4= 0000 0000
0000 0360
10000 0000
L 0000 .0000
r 0000 0000
0000 .0000
0411 0411
5 _ | -8 ~.3163
1014 1014
0003 —.0003
0762 —.0762
| 0486 —.0486
0000
10000
c = | 1.0000
10000
10000

.0000 .0000 1.0000 .0000 U0y
.0000 .0000 .0000 .0000 1.0000
-.0119 —-.0186 —-31.2350 .0ouo 0000
—.0324 -1.0634 894.4348 .0000 .0009
.0000 .0069 —.6015 .0000 .0000
.0000 .0000 .0000 —.0929 .0349
.0000 .0000 .0000 -27.8066 —2.0376
.0000 .0000 .0000 2.4582 —.0241
.0000 .0000 .0000 .0000 .0000 .0000
0000 .0000 .0000 .0000 .0000 .0000
1322 .0866 1322 .0866 1018 1018
—.9597 -6194 —-.9597 -.6194 -1.0183 -1.0183
—-.0284 -.0215 -.0284 -.0215 —.0200 —-.0200
—.0002 -.0001 .0002 .0001 —.0001 .0001
2219 2011 -.2219 0 —.2011 1109 —.1109
.0029 0021 -.0029 -.0021 .0021 -.0021
.0000 1.0000 .0349 .0000 .0000 .0000 0000
.0000 .0000 .0000 .0000 1.0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000
1.0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 1.0000

B Matrix for Five Control Surfaces

-

.0000
.0000
.0411
-.3163
.1014
.0003
.0762
.0486

z:[() O u w

.0000 .0000
.0000 .0000
0411 .3206
-.3163 -2.5974
.1014  -.0699
—.0003 -.0004
-.0762 5339
-.0486 .0071
1 3

éter

u = [ bt ber bret

A-2

.0000 .0000
.0000 .0000
3206 .0000
—2.5974 .0000
—.0699 .0000
.0004 .0006
—-.5339 1144
-.0071 -.0344

p T ]T

T

5rud ]

<4

L0000 7
U330
0000
{0000
0000
—-.0C71
4913
—.4377

.0000
000
0000
.H000
.0000
.0006
144
—.0544




Table A.2. ACM Entry Matrices - 30% Loss Of Effectiveness Left Trailing Edge

r .0000 .0000 .0000 .0000 1.0000 .0000 .0000 .0000 17
.0000 .0000 .0000 .0000 .0000 .0000 1.0000 .0450
—32.1420 .0000 —.0050 .0550 —39.9760 .0000 .0000 .0000
i = -1.4370 .0000 —.0240 —1.0280 894.1070 .0000 .0000 .0000
o7 .0000 .0000 .0000 .0070 —.6920 .0000 .0000 .0000
.0000 .0360 .0000 .0000 .0000 —.0990 0450  —.5990
.0000 .0000 .0000 .0000 0000 —31.8340 —2.1380 5160

L 0000 .0000 .0000 .0000 .0000 3.6670 —.0310 —.4420 |

r .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 1
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0520 .0520 .0000 .0780 .1040 0670 .0930 .0800 .0000
B = -.3300 -.3300 .0000 —-.6220 —.9650 —.6220 —.7350 —.7350 .0000
- .1020 1020 .0000 -.0210 —.0280 -.0210 —.0200 —.0200 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 0010
.0800 —.0760 .0000 2010 —.2220 -.2010 1110 —.1110 1150

L .0490 —~.0480 .0000 .0030 —-.0040 —.0030 .0030 -.0030 ~.0550 ]

.0000  .0000 1.0000 0410 .0000  .0000 .0000 0000
.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000
1.0000  .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 1.0000 .0000 .0000 .00CC  .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 1.0000

Q
1l

B Matrix for Five Control Surfaces

.0000 .0000 .0000 .0000  .0000
.0000 .0000 .0000 .0000 .0000
.0520 .0520 1710 2510  .0000
-.3303 -.3300 -1.3570 -2.3220 .0000
.1020 .1020 -.0410 -.0690  .0000
.0000  .0000 .0000 .0000 .0010
.0800 -.0760 3120 -.5340 .1150
.0490 -.0480 .0060 -.0100 -.0550

z=[o¢qugpr]T (A.3)
'U,:[éd bcr btet bter brud ]T (A1)
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Table A.3. ACM Entry Matrices - 50% Loss Of Effectiveness Left Canard

A-4

0000 .0000 .0000 0000 1.0000 .0000 .onon
.0000 .0000 .0000 .0000 .0000 .0000 1.0000
-=32.1500 .0000 -—.0080 0580 —=36.6690 0000 .00uw
~1.2460 .0000 —.0290 -—1.0450 894.3280 .0000 .0000
.0000 .0000 .0000 .0040 —-.6460 .0000 .0000
.0000 .0360 .0000 .0009 .0000 —.0820 .0390
.0000 .0000 .0000 .0000 .0000 -—-23.8380 -2.0700
.0000 .0000 .0000 .0000 .0000 2.4580 —-.0270
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 0000
—-.1560 —.1150 11320 .0840 .1320 .0840 .1000 .1000
—-.1150 —-.2250 -.9610 -.6210 -.9610 —-.6210 —.7320 -.7320
G260 0720 —.0280 —-.0220 —.0280 —.0220 -—-.0200 -.2200
.0000 -.0010 .0000 .0000 .0000 .0000 .0000 .0000
0350 -—.0690 2220 2010 —.2220 -.2010 1110 -=.1110
0240 —.0490 .0030 0030 -.0030 -.0030 .0020 -.0020
.0000 .0000 1.0000 .0349 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000
= 1.0000 .0000 .0000 .0000 .0000 .0000 .0000 0000
.0000 1.0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .00060 .0000 .0000 .0000 .0000 1.0000
B Matrix for Five Control Surfaces
[ .0000  .0000 .0000 .0000  .0000 ]
.0000 .0000 .0000 .0000 .0000
-.1560 -.1150 .3160 .3160 .0000
B = -.1150 -.2250 -2.3140 -2.3140 .0000
- .0360 0720 -.0730 -.0700 .0000
.0000 -~.0010 .0000 .0000 .0010
.0350 —.0690 .5340 -.5340 .1140
0240 -.0490 .0080 —.0080 —.0550_
T
z= [ 8 ¢ uw w q 3 pr ]
T
u= [ e der 5::1 5ter 6rud

0000
0390
RVVIVIY)
.0000
.0000
—.9990
.4990
—~.4520

.0000
.00n0
0000
0000
0500
.0010
L1140
—.0330

]




o)

Table A.4. ACM Entry Matrices - 25% Loss Of Effectiveness Rudder

-~

LYol 0000 .uouy .J000 1.0000 006G 0000
.0000 .0000  .0000 .0000 .0000 .0000 1.0000
—~32.1540  .0000 —.0080 0540 —31.5470 .0000 0000
—1.1342 .0000 —.0320 —1.0580 894.4400 .0000 L0000
0000 .0000  .0000 .0070 —.6740 .0000 0000
0000 .0360  .0000 .0000 .0000 —.0920 0350
6000 .0000  .0000 .0000 .0000 ~27.8550 —2.0330
.0000 .0000 .0000 .0000 .0000 2.0520 —.027¢
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000  .0000  .0000  .0000  .0000  .0000 .0000  .0000
0410 .0410 11320 .0870 11320 L0870 .1020 .1020
-.3170 -.3170 -.9600 —.6200 -.9600 —.6200 —.7330 --.7330
1020 L1020 -.0280 —.0220 —-.0280 —.0220 —-.U20u  —.y20u
0000  .0060  .0000  .0000  .0000  .0000 0000 .0000
0760 —.0760 2220 2010 =.2220 -—.2010 A110 =~ 1110
0000 0000  .0000 0000  .0000  .00G0 —2.0520  .0270

0000 .0000 1.0000 .0349 .0000 .0000 .0000 0000
0000  .0000  .0000 .0000 .0000 1.0000 .0000  .0000
= 1.0000 .0000 .0000 .0000 .0C0C  .0000 .0000  .0000
.00M0  1.0000 0000 .0000 .0000 .0000 .0000  .0000
L 0000 .00¢0 .0000 .0000 .0000 .0000 .0000 1.0000
B Matrix for Five Control Surfaces
[ .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000
.0410 0410 3210 3210 .0000
g - | —3170 3170 —2.3130 -2.3130 .0000
- .1020 .1020 -.0700 —.0700 .0000
.0000 .0000 .0000 .0000 .0000
.0760 -.0760 5340 —.5340 .0870
0000 .0000 —-2.0520  .0270 .4190

r:[Ogbquﬁpr]T

u= [ 5,:1 6Cr 5151 6lcr 6rud

]T

0000 ]

0350
0000
.0000
.0000
—-.9990
4600
—.4190

.0000
.0000
.0000
.0000
0000
0000
L0870
1190

1




-

Table A.5. ACM Exit Matrices - No Failures

.0000 .0000 .0000 .00G90 1.0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 1.0000
—28.5877 0000 —-.2762 ~.0283 -136.2190 .0000 .0000
—-4.94635 26.9479 1330 —-.6753 262.7934 .0000 .0000
.0000 .0000 -.0018 .0035 -.6511 .0000 .0000
.0472 L0322 .0000 .0000 .0000 —.0245 4632
.0000 .0000  .0000  .0000 .0000 —7.7280 —1.4530
.0000 .0000 .0000 .0000 .0000 —.0889 —.0543
0000 .0000  .0000  .0000  .0000  .0000  .0000  .0000
0000  .0000  .0000  .0000  .0000  .0000  .000O0  .0000
~.0253 —.0281  .0206  .0131  .0206  .0131 0154  .0154
—-.1512 —.1471 -.1302 —-.0848 -—.1302 —.0848 —.0997 —.0997
0181 —.0156 —.0024 -—.0018 -—.0024 -.0018 —.0016 —.0015
.0007 —.0007 -.0001 -.0001 .0001  .0001 —.000i .0001
0113 -.0337 .0270 .0240 —.0270 -.0240 0135 -.0135
0133 -.0121 —-.0005 —.0004 .0005 .0004 —.0004 .0004
.0000 .0000 1.0000 .4600 .0000 0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000
= 1.0000 0000 .0000 .0000 .0000 .0000 0000  .NGEO
0000 1.0000 .0000 .0000 .0000  .0000 0000 0000
0000 0000 0060 .0000 .0000 .000C 0000 1.0000
B Matrix for Five Control Surfaces

.0000 .0000 .0000 .0000 .0000 ]

.0600 .0000 .0000 .0000 .0000

-.0253 —.0281 .0491  .0491  .0000

B = —.1512 —~.1471 -.3147 -.3147 .0000

- .0161  .0156 -—.0058 —.0058  .0000

0007 —-.0007 -.0003 .0003  .0004

0113 ~.0337 .0645 -.0645 0277

| 0133 -.0l21 -.0013 .0013 —.0130 |

z=[0¢quﬁpr}r

uz[écl Ocr  Btet Oter ‘Srud]T

A-6

.0000
5184
.0000
.0000
.0000

—.8878

J

9687
0456 J

.0000 7
.0000
.0000
.0000
.0000
.0004
0277

-.0130




[

Table A.6. TF/TA Matrices - No Failures

>
~1

r L0000 .0000 .0090 .0000 1.0000 .0000 L0000 0000 ]
L0000 .0000 .0000 .0000 .0000 .0000 1.0000 0153
—-32.1961 0000 —.0335 .0357 —15.6105 .0000 .0000 .0000
-.5002 .0000 —-.007T1 -3.2056 1004.8738 .0000 .0000 .0000
.0000  .0000 -.0003 .0202 -1.6773 .0000 .0000 .0000
.0000 .0320 .0000 .0000 .0000 —-.2538 0155 —.9999
.0000 .0000 .0000 .0000 0000 -—66.9300 —5.4612 1.0349
L 0000 .0000 .0000 .0000 .0000 8.2821 —.0299 —1.2709J
.0000 .0000 .6000 .0000 2000 .0000 .0000 0000 0u00 7
L0000 6000 0000 0000 0000 .0000 0000 00000000
3284 —.3284 2548 1679 2548 1679 1975 1975 n000
6788 —6788 —1.7317 -1.1313 —1.7517 —=1.1313 —-1.3351 —1.3351 000
J238T 2387 -.0334 —.0406 —-.0534 - 0406 —.0372 —.0372 0000
0012 —.0012 —.0001 ~.0001 .0001 .0001 — 1001 0003 0018
2336 — 2336 4200 3737 —.4200 —-.3737 2100 -.2100 3737
1590 — 1590 0024 0012 —.0024 -.0012 —-.0012 -.0012 —.ITOSJ
0000 0000 1.0000 .0138 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000
C = 1.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 1.0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 1.0000
B Matrix for Five Control Surfaces
.0000  .0000 .0000 .0000  .0000 1
.0000 .0000 .0000 .0000 .0000
-.3284 -.3284 6202 6202 .0000
B - —-.6788 —.6788 —-4.2181 -4.2181 .0000
- 2387 2387 -.1312  -.1312 .0000
.0012 -.0012 -.0003 .0005 .0018
2336 —.2336 1.0037 -1.0037 3737
L1590 —-.1590 .0048 —.0048 —.1795 ]
, T
r:[ﬂ @ v w q 3 p r] (A 11)
T
U= [ écl 5cr 6tel 6ter 6rud ] (A12)




Table A.7. TF/TA Matrices - 30% Loss of Effectiveness Left Trailing Edge

L0000 .0000 .0uou .0000 1.00U0 L0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 1.0000
—-32.1704 .0000 -.0330 —.0200 -15.2961 .0000 .0000
_ —.5110 .0000 —.0080 -—3.0620 1004.8730 .0000 0000
- .0000  .06000 .0000 .0210 —-1.8240 .0000 0000
0000  .0320 .0000 .0000 .0000 —.2460 U160
0000 .0000 .0000 .0000 0000 —65.9740 —5.4310
L 0000 .0000 .0000 .0000 .0000 8.1650 ~.0340
r .0000 0000 .0000 0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .00060 0000 0000 .0000 0000
—.3450 -—-.3450 .0930 .1580 2520 .1580 134 11940
—.6760 —.6760 .0000 —1.1140 -=1.7250 —=1.1140 -—1.3160 —1.3160
.2360 2360 .0000 -.0400 -.0520 —.0400 —-.0360 —.0360
.0010 -.0010 .0000 .0000 .0000 .0000 .0000 0000
.2300  —~.2300 .0000 .3680 —.4150 -~ .3680 2070 -.2070
L .157 —.1570 .0000 0010 —.0020 —.0010 N010 ~ 0610
0000 L0000 1.0000 0160 0000 0000 .ouvy 00
.0000 .0000 0000 .0000 0000 1.0000 .0000 [EDIIN0]
cC = 1.0000 .0000 0000 .0000 .0000 0000  .0000 0000
.0000 1.0000 .0000 .0000 .0000 .0000 .0000 L0000
.0000 .0000 .0000 .0000 .0009 .0000 .0000 10000
B Matrix for Five Control Surfaces
.0000  .0000 .0000 .0000  .0000 ]
0000 .000N .0000 .0000  .0000
~.3450 —.3450 4450 6042 .0000
5 - —.6760 —.6760 -2.4300 —4.1550  .0000
B 2360 .2360 —.0760 —.1280  .0000
0010 -.0010 .0000 0000  .0020
2300 -.2309 53750 9900  .3300
| 1570 —.1570 0020 —.0040 —.1770 |
T
r:[& o v w q 8 p r]
T
w=[6u b bt Bier brua |

A-8

.0000
0160
.0000
0000
0000

—1.0000

12860 |

~1.2630 ]

0000
.0000
0000
.0000
0000
0020
3800
—-. 1770

(A.13)
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[able A%, TF/TA Matrices - 50% Loss of Effectiveness Left Canard

0110

RYONND)
Honyg

r ] 3000 0000 0000 1.0000 Uooo Jouo
Na00 0000 0000 0000 0000 .0000 1.0000
—32 1720 .0000 —.0380 —0290 -11.0560 0000 0000
i = —.3540 0000 —.0160 —3.6430 1005.4390 L0000 000
- nouo - 0000 0000 0140 —2.1070 0000 0000
0000 0320 3600 0000 0000 —. 2780 0110 -1
oouo - .0u0s 0600 0000 0000 =TT1970 —6.1310 1
L B0 0ono 0000 .0000 L0000 8.7570 —-.0200  —1
r O 900 uouy G0 cuno uuun IS IVIY] RO
Lt suno IV oy U600 o0 UO0Y 1))
- 5220 - jTan 2940 1430 2940 1030 2274 2276
0= - 3950 - 7740 =20190 —-1.3040 -=2.0190 —-1.3040 —13390 —=15320
- 1390 2750 — U610 -.0470 — 0610 - 0470 — 1430 —.U430
010 — 0020 1000 0000 .0000 0000 000y nuuo
1210 —.2830 4850 4310 - 4850 — 4310 2430 ~ 2430
L 0920 — 1220 0010 0010 —.0010 —.0010 uol10 — 0010
0000 U060 1.0000 0110 0000 0000 (030 HOBH
000 0000 0000  .0000  .0000  1.0000 w000 RIIE]
¢ o= 1.0000 0000 vooo 0000 0000 0000 11000 0]
0ong  1.0000 0000  .0000 0000 0u00 1000 TR
unoo 0000 0000 0000 .0000 0000 B0n - 1.ou00
B Matrix for Five Control Surfaces
.0000 .0000 .0000 .0000 .0000 ]
.0000 .0000 .0000 .0000 .0000
-.5220 -.3790 7140 .7140 .0000
B = ~.3950 —-.7740 -—-4.3620 -—-4.8620 .0000
- 1390 2750 —.1510 —.1510  .G0OO
.0010 -.0020 .0000 .0000 L0020
1210 —.2830 1.15390 -1.5190 1310
.0920 -.1820 .0030 -.0030 -.2070 ]
, T
T = [ 8 &6 uw w g J pr }
. T
u = [ Oci 5cr el 6!er 6rud

AT00

uenn 7

00060

uanon

16350

<

AT I
DI
SO
2000
000
0013
1310
— 2470

iA.13)

(A 16)




Table A.0. TF/TA Matrices - 25% Loss of Effectiveness Ruader

S — |

r 00006 0600 L0000 0000 1.0000 0000 RIDHN 000 7
3000 .0000 0000 0000 000 0000 1.0uL0 140 \
—32. 1710 0000 —=.0340 0050 —=13.8570 .00u0 AR wg
— 4440 U000 -.0140 —3.1400 1004.9000 .00U0 SUnin SOUL l
Giog L 0gun .00b0  —.0200 -1.3199 0000 000 SIEVIVI
o000 0320 0000 .0000 0000 —~.2300 0140 —1 0000 }
(000 0000 0000 .0000 0000 -65.9740 -=35.3590 —1.1910 J
L 0000 00nQ 0000 1000 0000 6.1230 —-.0350 —1.2160
r UG VIels} 0000 (000 0000 .0000 0000 0] S0
oo 0600 4000 3000 1000 0000 0000 A [BIEATS]
— 3210 — 523U 2520 1650 12520 16350 14940 HEN)] g
— 5590 = 6090 —~1.7250 —1.1140 —=1.7250 —1.1140 =13160 =1 3i0u ooty
2350 2350 - 1520 — 3400 - 520 - 1400 — 0360 — e ISTRIE]
Ol = aule 0ubo IIIs10] uuoo vuYY [VITIVID] G i
23— 2300 1150 3680 - 4150 —. 3680 2070 — 27 2T
L Juun G0 0000 000 ub00 nouo - -6.1230 [RESIVE S Y
0000 G000 1.0000 0138 .0000 0000 .0000 RGN
0000 0000 0020 .0000 .0000 1.0000 .0000 0000
[ 1 0000 0000 0000 .00G0 .0000 .0000 .0000 000
0000  1.0000 0000 .0000 .0000 .0000 2000 Nouo
nono 0000 0000  .0000 .0000 .000G 0000  1.0000
B Matrix for Five Control Surfaces
[ .0000  .0000 0000 0000 0000
.0000 .0000 .0000 .000u .0000
-.3240 -.3240 6110 6110 .0000
B = —.6690 —.6690 -4.1550 -4.1530 .0000
- 2350 2350 —.1280 —.1280 .0000
.0010 -.0010 .0000 .0000 .0010
2300 -.2300 9900 -.9900 2760
L .0000 0000 -6.1230 0390 1.2160 |
r T
I = [ O ouwow oy J po J
X T
u = { bt ber bt brer brud }




Appendix B. ARMA MODEL GENERATION

B.1 INTRODUCTION

This appendix contains a sumimnary of the ARMA model conversion techuiqgue de.
veloped by Bokor and Keviczky and the MATRIX, macro used to accompiish this rians.
iormation for all the plant mairices (1. 11). Detailed mathematical development of Lo

procedure is contained in reference (1).

B2 ARMA MODEL

The method used to generate the ARMA model representation from a state-space
model representation is based upon using constructibility invariants. This method efimi-
nates some of the problems associated with the observability matrix technique wien the
state transition matrix is singular. Kecall that the state-space representation of the con-

initous time svstem is expressed by

ylty = Cz(t) B ER

where

-4 = the continuous time plant matrix (n x n)

B

the continucus time control matrix (n x m) with the rank or B = m
7" = the continuous time output mairix ({x n)

r = the state variable vector with n states

4 = the control input vector with m inputs

v = the output vector with {outputs




The state-space matrices of Equation B.1 and Equation B.2 are discretized for a

given sampling time T and expressed in the discrete time domain by

-
~
i

Fz(T)+ Gu(T) (B.3)

&
~

~—
I

Hz(T) (B.4)

where

F = the discrete plant matrix (n x n)

(G = the discrete control matrix (n x m) with the rank = m

H = the discrete output matrix ({ x n)
r = the state variable vector with n states
u = the control input vector with m inputs

y = the output vector with [/ outputs

For this technique, the discrete time representation given in Equations B.3 and B.
must have no poles at the origin. i.e. the inverse matrix F~! exists. The constructibility

matrix C, is defined as
HFE-!
HF-?

Co = HF-3 \B-))

HE™"

and must have rank Cy = n.

A new matrix, TT, is formed from the linearly independent rows of C, in Equa-
tion B.5 (where each block HF~* is | x n). The first row of the new matrix is the firs

row of C,. The second row of T is the next linearly independent row of C,. The process

continues until the matrix 77T has full rank n.




The transformation matrix T is formed by rearranging the rows of matrix TT into

the following form

. -

hyF~!

hyF~%
T = : (B.G)
h F-1

L h.[F-V’

where h; is the tth row of the H matrix.

For 1 <1 <[, the ith constructibility index V, is defined as the sinallest positive integer
such that h; F~Y*~! is a linear combination of the rows before it. Then the constructibility
indices satisfy the relation

Vi+Va+..-4+Vi=n (B.7)
and are arranged in descending order

iz2Va2Va>... Y (B.3)

If Equation B.8 is not satisfied, permutate the output matrix, f/, to satis{y the relationship

of the constructibility indices.

Then the following matrices are defined:

R = T} (B.9)
I = HR (B.10)
F = R'FR (B.11)
G = R7'G (B.12)

B-3




A reduced order ARMA model is used where, instead of having n cocflicients. only
N = n/m (rounded to the largest integer) are nceded. The A, coefficients of the ARNMA

model are calculated from the relationship

A, = —I—{Sp'(k—i) (B.13)
where i =1,..... V., (k — 1) is a delay operator, and
k-1 o ... o |
(k = 2) 0 0
(k= Vy) 0 0
0 (k~1) 0
0 (k-2 0 .
Sp (k) = . . ) _ e ™Y (B.1y)
0 (k= Vy) 0
0 0 (k- 1)
0 0 (k-2)
o 0 (k=W |

As an example, to find the A; coefficients using Equation B.13 and Equation B.1.4,
the S, (k) matrix elements associated with the (k-1) terms in Equation B.14 would be set
equal to 1 and all other matrix elements equal to zero. The A, coefficients would require
Sp.(k) matrix elements associated with the (k-2) terms in Equation B.14 be set equal to 1

and all other matrix elements equal to zero, etc.

The B; coefficients of the ARMA model are calculated from the relationship

B, = AS,(k~-1)G (B.15)

B-4




where,

N .
Sq. = Z st
i=1
where

S = block diagonal [$,S},..., S]]

and §; is the block-diagonal Toeplitz matrix given by

0 ... 0
S,=11 € RVXY)
0 1 O

forj=1,...,1

B.3 ARMA IMPLEMENTATION

(B.16)

(B.17)

(B.13)

The implementation of the theory presented in the previous section is executed in

MATRIX x using a modification of a macro developed by Velez in his thesis (11). For this

design,

vV, = 2
V, = 2
Vs = 2
V, = 1
Vs = 1




-10000-
0 0000
01 00O
0 06000
Sp, =
00100
0 00 0O
0 0010
_00001<
FOOOOO-
1 00 0O
0 00 00
01000
Sp, =
0 00O0O
00100
0 000O0O
_00000‘
-10000000
01 00O0O0TCCO
0 01 00 O0O0OTUWO
0001 0O0O0TO0
0 000T1O0O0TO0
0 000 O0T1TO0FUO
0 000O0OO0ODT10
0 000 O0O0O0O 1

B-6

(B.19)

(B.20)

=50 (B.21)




-

o o o o o o

o O o o o o o o

00000 0,]
000000
000O0O00OUO
100000
= §! (B.22)
000000
001000
000000
00000 0|

B.3.1 MATRIXx ARMA Macro The following MATRIX ¢ macro listing can be di-

rectly typed into MATRIX y and implemented by using the command “EXEC( filename™)”.

//ENSURE [HAT A/C MATRICES FOR DESIRED FLIGHT CONDITION HAVE BEEN

//LOADED IN MATRIXX.

//THIS PROGRAM WAS MODIFIED FROM VELEZ’S AND HAMMOND’S THESES AND IS
//WRITTEN FOR AN 8 STATE PLANT WITH 5 OUTPUTS

CDUM=C([1 2 3 4 5],:);

SDUM=<A,B;CDUM,0+EYE(5)>;

SD=DISC(SDUM,N, .025);

(F G H D]=SPLIT(SD,N);

//DEFINE THE NUMBER OF STATES
//INDICATE NUMBER OF OUTPUTS

//THE C MATRIX FOR THIS MODEL HAS
//10 QUTS, § OF WHICH ARE COMMANDED
//FORM THE S PLANE SYSTEM MATRIX
//CONTINUQUS SYSTEM MATRIX

//DISCRETIZES THE SYSTEM MATRIX
//TSAMP=.025

//SEPARATES DISCRETE MATRICES

B-7




J=N-L;

CO=<H*INV(F)>;

FOD T=2:J+1,...

END;

CO=<CO;H*INV(F)**I>;...

RCO=RANK(CO)

//#l‘l*ttt#t#*##****#***#*********#*t*##t*tt*t**#****#*#***#********#***

//FORM CONSTRUCTABILITY MATRIX

//J+1 IS THE LARGEST POSSIBLE VALUE
//0F INDEX V1

//THE REMAINING SECTIONS OF THE CODE
//ARE WRITTEN FOR THE UNDER THE
//ASSUMPTION THAT J>0.

//THIS LINE FORMS THE COMPLETE
//CONSTRUCTABILITY MATRIX IF J=0.

//ONLY J*L+1 ROWS OF CO ARE NEEDED
//TO SELECT BASIS VECTORS. THIS
//FORMS THE REMAINING BLOCKS CF CO

//MAKE SURE THAT CO HAS RANK N

[ 7 %% koo o o KK R R R o KKK KK KK K R KRR K K KK KK K Kk R
//FORM TEMPORARY TRANSFORMATION MATRIX

KEEP=1;
CR=0;

TT=<C0(1,:)>;
TEMP=TT;

FOR I=2:J*L+1,...

END;

RN

TEMP=<TT;CO(I,:)>;...
RN=RANK(TEMP) ;...

//TRACKS WHICH ROWS OF CO WHICH GO IN
//TEMP INITIALIZES COUNTER
//INITIALIZES TEMPORARY VECTOR 1ST HOW
//INITIALIZES TEMPORARY VECTOR

//LOOP FOR GENERATING

//TEMPORARY TRANSFORMATION MATRIX
//LOCK THROUGH THE ROWS OF CO FOR
//THE 1ST N LINEARLY INDEPENDENT ROWS.
//THIS ENSURES THAT EACH ROW OF THE

IF RN=I-CR THEN TT=TEMP;...//H MATRIX IS REPRESENTED.

KEEPERS=<KEEP;I>;...
KEEP=KEEPERS; ...

//"KEEP* LISTS ROWS OF CO WHICH ARE
//INCLUDED IN "TEMP".

ELSEIF RN<I-CR THEN TEMP=TT;...

CR=CR+1;...

END,...

//MAKE SURE THAT RANK OF TEMP IS N




A T L T L R L Rt L L L L T g
//CALCULATE INDICES

V=0%0ONES(L,1); //INITIALIZES INDEX MATRIX
FOR I=1:L,...
K=KEEP(I,1);...
IF K=I THEN V(I,1)=1;... //ROWS 1-L OF CO MUST BE LINEARLY
END;... //INDEPENDENT FOR THE L INDICES TO
END; //EACH EQUAL AT LEAST 1.
FOR I=L+1:N,... //THIS LOOP IS NOT NEEDED FOR J=0
K=KEEP(I,1);... //CASE.

IF K<(J-1)«L+1 THEN V(K-L,1)=V(K-L,1)+1;...
ELSEIF K<J*L+1 THEN V(K-(J-1)*L)=V(K-(J-1)*L)+1;...
END; ...

IF K=J*L+1 THEN V(1,1)=V(1,1)+1;...
END; ... //PLEASE NOTE THAT ADDITIONAL LOCPS
END; //MUST BE ADDED FOR CASE WHERE J>3
//0R SUBTRACTED WHEN J<3.

KEEP //ENSURE THAT ALL L INDICES AT LEAST
//ARE EQUAL 1, THEIR SUM IS N, AND

v //THEY ARRANGED IN DESCENDING ORDER.
//0THERWISE, THE H MATRIX MUST BE
//RESTRUCTURED.

//****t****t*******#*‘*****i*#**********‘#*****#*******#****t**********

//THE FOLLOWING PORTICN OF THIS MACRO WORKS FOR THE S INDICES HAVING
//VALUES OF 2,2,2,1,1 RESPECTIVELY. OTHERWISE, THE "T" MATRIX AND
//SP’S AND SQ MAY HAVE A DIFFERENT FORM. REFER TO BOKOR AND
//KEVICZKY ARTICLE FOR SPECIFIC GUTDANCE.

T=<TEMP(1,:);TEMP(6,:);TEMP(2,:);TEMP(7,:) ;TEMP(3,:) ;TEMP(8,:);...
TEMP(4,:) ;TEMP(5,:)>; //ROWS OF TEMP ARE ARRANGED IN ORDER
//OF CALCULATED INDICES

J/T=<H(L, ) *Fsel; ..  ;H(L,:)*F*xV1;| .. ;...
// H(L,:)*Fxx1; ... ;H(L,:)*F**xVL>

B-9




R=INV(T);
HBAR=H*R;
FBAR=INV(R)*F*R;
GBAR=INV(R)*G;

SQ1=EYE(8); //SQ1=S%%0

//SQi IS AN NXN BLOCK DIAGONAL MATRIX
//WITH L ENTRIES DIMENSIONED ViXVi
ces //HAVING 1°S ON THE LOWER SUB-

T //DIAGONAL (A VERSION OF A TOEFLITZ
T //MATRIX). SQi=S**(i-1)

S02=<0

O O OO O oo oo

HE. //5=BLOCK DIAGONAL{TOEPLITZ(ViXV1),
0>; // ..., TOEPLITZ(VLXVL)}.

O O O O O O

O O O 0O O O OO O
O O O O OO O
O O O O O O O OO
O O » OO O O O
O O O OO O O OO
O O 0O OO0 O o o

//THE NUMBER OF ARMA COEFFICIENTS NEEDED FOR A REDUCED ORDER MODEL
//1S APPROXIMATELY K=N/L (ROUND UP TO NEXT INTEGER FOR ANY REMAINDER)

//FOR THE N=8 L=5 CASE, 2 ARMA COEFF’S AND 2 SP MATRICES ARE NEEDED.

//FOR THE K=1 CASE

SP1=<1 0 0 0 0; //THE NXL SP MATRICES HAVE THE
0000O0;. //SAME FORM. THE FIRST COLUMN IS
01000;. J/{K-1;...;K-V1;0%(V2,1);...;0%(VL,1)]
0000 O0; //THE SECOND COL ENTRIES START ON THE
0010 0; //ROW UNDER THE FIRST COL ENTRIES
0000 O0; //00%(V1,1);K-1,...;K-V2;0*(V3,1);...]
0001 0;. //TiIS TREND IS CONTINUED FOR ALL L
0000 1>; //COLUMNS.

//AND FOR THE K=2 CASE

SP2=<0 0 C 0 0;... //THE SP MATRICES HAVE A TIME
10000;... //SHIFT OPERATOR (K-i).

0000 O0;
01000;
0000 Q;
0010 0;
000O0O0;
0000 O

//NQW ALL THE PRELIMINARY VARIABLES HAVE BEEN DETERMINED AND
//CALCULATION OF THE ARMA COEFFICIENTS CAN PROCEED.




B1ARMA=HBAR*SQ1*GBAR;
B2ARMA=HBAR*SQ2*GBAR;

A1ARMA=-HBAR#*SP1;
A2ARMA=-HBAR*SP2;

//B1 COEFFICIENT
//B2 COEFFICIENT

//A1 COEFFICIENT
//A2 COEFFICIENT

GO=INV(EYE(5)+A1ARMA+A2ARMA) * (B1ARMA+B2ARMA) ;

CLEAR CDUM SDUM

B-11




Ay

RV

By

B,

AUTO REGRESSIVE MOVING AVERAGE

e
ard

DELS

Table B.1. ACM Entry ARMA Model - No Failures

[ ~1.9766D ~ 00
0.0000D - 00
3.0638D — 03
0.0000D - 00
0.0000D - 00
9.7666D — 01
0.0000D — 00

-3.0627D - 03
0.0000D - 00
0.0000D - 00
734840 — 04

—6.7897D - 06
3.1534D - 05
2.4002D - 05
1.20780D - 03

[ —7.7184D — 04

~2.1695D - 05
3.3706D - 05

—6.0930D — 04
1.3938D — 05

o7 =

0.0000D — 00
—1.9877D — 00
0.0000D — 00
—-27.8260D - 00
5.7549D — 01
0.0000D — 00
9.8983D — 01
0.0000D — 00
27.7994D ~ 00
~6.3593D - 01
7.3484D — 04
6.7897D — 06
3.1534D - 05
—2.4002D - 05
—1.2078D — 03
~7.7184D - 04
2.1695D — 05
3.3706 D — 05
6.0930D - 04
—~1.3938D — 05

2.0200D — 00
0.0000D — 00
~1.9857D — 00
0.0000D - 00
0.0000D — 00
~2.0015D — 00
0.0000D — 00
9.8814D — 01
0.0000D — 00
0.0000D — 00
580750 — u3
~6.3897D ~ 06
~2.1788D — 05
1.64150 — 04
17365 o4
~5.5416D - 03
1.3484D — 05
—-4.1380D — 06
3.7870D - 04
—8.6630D — 06

B-12

0.0000D - 00 0.0000D - 00
—-7.0718D - 06 -8.7077D - 05
0.0000D - 00 0.0000D - 00
—9.7496D — 01 -7.0019D - 01
—-6.0038D — 04 —9.7326D - 01
0.0000D — 00 0.0000D — 00 l
0.00000 — 00 0.0000D - 00
0.0000D — 00 C.0000D — 00
0.0000D = 00 0.0000D — 00
0.0000D — 00 0O.0u0D — 00
5.80750D —u3 000000 = un
6.38970D - 06 331300 =05
~2.1788D - 05 0.0000D ~ 00
~1.6415D — 04 1.4422D - 05
—-1.7236D — 04 —-13526D <03
—5.5416D — 03 .Uyl D — 00
—1.3484D — 05 327080 - 06
—4.1380D — 06 2.0000D - 00
-3.7870D ~ 04 913600 =03
R6630D - 06 —=2.1013D — 06




‘Table B.2. ACM Entry ARMA Model - 30% Loss of Effectivencss Left Trailing Fdee

M —1.9278D - 00 0.0000D - 00 7.2958D — 01 0.00000 — 0o 0.00000D = ui
0.0000D - 00  —1.9879D — 00 0.0000D — 00 —1.4482D - 05 11316 D — 04
1 = -1.3075D - 02 0.0000D — 00 —2.0334D - 00 0.0000D — 00 0.0000D - 00
0.0000D — 00 —21.4570D — 00 0.0000D — 00 -9.8068D — 01 —5.4042D - 01
0.0000D — 00 5.6254D - 0.0000D — 00 -5.9587D —04 ~9.7238D - 01
[ 9.2777D - 01 0.0000D — 00 —6.7154D — 01 0.0000D — 00 0.0000D — 00
0.0000D — 00 9.8145D — 01 0.0000D — 00 0.0000D — 00 0.0000D — 00
1, = 1.3073D - 02 0.0000D — 00 1.0229D — 00 0.0000D — 00 0.0000D — 00
0.0000D — 00  21.4414D - 00 0.0000D — 00 0.0000D — 00 0.0000D — 00
| 0.0000D —00 -6.2820D —~01 0.0000D — 00 0.0000D — 00 0.0000D — 00
r 8.4873D — 04 8.4975D — 04 2,9229D - 03 3.96020D — 03 0.0000D =00 7
—1.4104D - 05 1.3849D — 05 249550 — 06  —4.3548D — 06  9.4704D — 06
B, 3.1696D - 05 3.1696D - 05 —1.2768D — 035 —=2.1488D — 05 0.0000D =00
2.5335D - 05 -2.4091D - 05 9.5873D - 05 —1.6409D — 04 3.6092D — 03
|  1.2172D -03 -1.1924D - 03 1.4627D - 04 —-2.4366D - 04 1.3668D — 03
[ —1.0088D — 03 —1.0088D — 03 —2.6349D —03 —3.5456D — 03 0.0000D — 00
—1.3970D - 05 1.3718D - 03 248300 =7 134010 LC -".9887D -03
B3 1.8899D — 05 1.8899D — 05 —5.0412D - 05 —7.2305D — 05 0.0000D — 00
—3.0520D — 04 2.9969D - 04 5.4302D — 05 —9.4750D — 05 —8.7T139D — 04
L 8.9433D — 06 —8.7818D - 06 —1.5912D —06 2.7765D — 06 2.5534D - 03
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Table

[

B.3. ACM Entry ARMA Model - 50% Loss of Effectiveness Left Canard

—1.9488D - 00
0.0000D - 00
—4.4830D - 03
0.0000D - 00
0.0000D - 00
9.48850 — 01
0.0000D - 00
4.48200 - 03
0.0000D — 00
0.00000D — 00
—4.06290 - 03
-7.0321D — 06
1.1191D - 05
1.1082D — 05
5.9619D — 04
3.7323D - 03
-7.0028D - 06
2.9058D —- 05
-1.7621D - 04

1.5137D - 06

0.0000D - 00
—1.9845D - 00
0.0000D - 00
~24.8440D - 00
3.7566 D — 01
0.0000D - 00
9.86660D — 01
0.0000D + 00
24.8260D - 00
~6.3624D - 01
—-3.1970D - 03
—1.0579D - 05
2.2381D — 05
—2.1809D - 05
~1.2180D - 03
2.78690D - 03
3.9010D - 05
3.6021D - 05
981580 - 04

—2.5136D - 05

5.3735D - 01 0.0000D - 00 000000 —on ]
0.0000D —00 —-10175D —05 —1.0%80D - 05
—2.0113D - 00 0.0000D — 00 0.0000D — 00
0.0600D — 00 ~9.7764D — 01 —6 23320 -1
0.0000D =00 ~6.0039D — 04  —9.72000 =01
—4.9634D — vl 0.0000D - 00 0ONODD —un
0.0000D -~ 00 0.0000D — 006 0.00DLLD =0V }
1.00TTD - 00 0.0000D —u0 000000 — w0 |
0.0000D — 00 0.0000D — 00 0.0000D — 00
0.00000D - 00 0.0000D - 00 0.G000D - 00
5.98590D - 03 5.9859D - 03 0.00000D — 0
3.9925D - 06 —3.9925D — 06 4.3437D - 05
~2.1786D — 05 -2.1786D — 05 0.0000D - 00
1.6413D - 04 —1.6413D — 04 3.4196 D — 05
1.9454D — 04 -1.9454D — 04 —1.3671D - 03
847240 33 -5.4734D - 03 U.U0uh D — 00
3.9740D - 06 =3.9740D - 00 —6.28904D — 06
—4.8049D - 05 —-4.8049D — 05 a00000D ~ 08
9.9993D — 05 ~9.9993D —05 —1.38260D — M
~-2.5626D — 06 2.5626D -6 105570 =06
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3,

B,

Table B.4. ACM Entry ARMA Model - 25% Loss of Effectiveness Rudder

[ ~1.9684D + 00 0.0000D + 00 4.3587D — 01 0.0000D + 00 0000600 + 1o
0.0000D +00 —1.9900D + 00 0.0000D +00 —=572378D —06 —125970 —n4
= —9.8466D —~ 03 0.0000D + 00 —1.9924D + 00 0.0000D + 0o (onunl) < oa
0.0000D 400 =2.7779D + 01 0.00000 + 00 —=9.7300D — 91— %300 = o
0.0000D + 00 6.69700D ~ 01 0.0000D +00 —6.TI51D =04 =9 70550 — it
[ 9.6838D — 01 0.0000D + 00 —4.10590D —~ 01 0.0000D + 00 0.0000D +vu
0.0000D + 00 9.9189D — 01 0.0000D + 00 0.0000D + 00 0.0000D + uu '
= 9.8443D -~ 03 0.0000D + 00 9.8452D - 01 0.0000D 400 0.6000D + 00
0.00000D + 00 277500 4+ Q1 9.5000D 4+ 00 0.0000D + 00 0.0000D + 00
L 0.0000D +00 ~7.1991D —01  0.0000D + 00 0.0000D + 00 0.0000D + 00 |
7.3170D - 04 7.3170D - 04 6.0040D — 03 6.0040D — 03 000000 4+ 1o
8.2887TD - 07 —8.2887D - 07 6.4352D — 04 —1.4213D ~-05 —1.2926D —ui
= 3.1701D - 05 3.1701D - 05 -2.1801D —05 -=2.1801D - 05 BRIV RESNIE
2.3351D - 05 -23351D -05 1.38370D -~ 04 —16374D — 04 JLGTAD - o
L -6.1414D - 07 6.1414D — 07 =5.1026D - 02 6.75650 — 0 LWt -
[ —7.45T0D - 04 —T7.4570D -~04 -=5.8168D —03 —5.8168D — 03 0000 + o

8.2662D — 07 -8.2662D — 07 6.4393D — 04 —~1.4204D — 05 —1.2935D — i1
= 2.4128D - 05 2.4128D - 05 —8.0847TD — 05 —8.0847TD — 05 000060 D + uo
2.3126D - 05 -2.3126D - 05 1.8015D ~ 02 —3.9739D - 04 —3.6138D - 13
| —5.9996D - 07 5.9996 D — 07 —4.6736D — 04 1.0310D - 05 3.3883D - 05
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Table B.5. ACM Exit ARMA Model - No Failures

[ —1.9837D - 00
2.6268D — 07
4.4540D — 04
9.3315D — 08

| —5.2666D ~ 09
9.8377D - 01

~2.60620 - 07
—4.4191D - 04
—9.2583D — 08
5.2253D — 09
—2.4336D - 03
1.5424D — 05
5.0031D — 06
5.6635D — 06
3.3248D ~ 04
2.2530D - 03
~1.8931D -~ 05
3.9268D — 06
—-4.1049D - 05

2.2522D - 06

—6.5693D — 01
—1.9658D - 00
1.4892D — 04
-2.0952D — 00
1.1718D - 01
6.3725D - 01
9.6796 D ~ 01
—1.4888D - 04
2.0986D — 00
-1.1514D - 0i
—2.4560D - 03
-1.8937D - 05
4.8478D — 06
-1.2379D - 05
-3.0209D — 04
2.3031D - 03
1.5462D ~ 05
3.7560D - 06
3.3518D - 05
—1.8390D - 06

2.2386D — 00
—1.1845D — 03
~-1.9772D - 00

1.2440D - 03
-6.65120 — 05
—2.2302D - 00

1.1476 D — 03

9.7758D — 01

1.2332D - 03
—6.80920 - 05
-2.3306D - 03

2.6378D - 06
-1.80590 — 06

1.9698D - 05
-3.3599D - 05

2.4219D - 03

1.66830 - 05
-2.8621D - 06

3.6174D ~ 05
~1.9847D — 06

1.1610D - 03
~2.5388D - 05
—1.3834D — Ut
—9.9831D ~ 01
—9.1823D - 05
0.0000D — 00
0.0000D — 00
0.0000D — 00
0.0000D — 00
0.0000D — 00
—2.3347D - 03
-2.0392D - u5
~1.8059D — 06
~1.9698D — 05

3.3599D — 05

2.4033D - 03
—-1.6687D — 05
—2.8588D — 06
-3.6176D — 05

1.9848D — 06

~1 86600 - 02 7]
438270 — 04
1.20160D - 06

—6.01100D — 12

998530 - 01

0.00000D — 00
0.0000D ~ 90
0.0000D - 00
0.0000D - 00
0.0000D - 00
6.6196D -~ 07
1.7325D - 05
1.5819D — 13
6.4000D - U6

—-3.2566 D — 04

—2.2257TD - 06

227640 -~ 06
6.5541D -~ 10

—4.9354D - 06
2.7078D - 07 |
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Table B.6. TF/TA ARMA Model - No Failures

-3.6847D - 00
0.0000D - 00
5.9207D - 02
0.0000D - 00
0.00000D - 00

2.6832D - 00
0.0000D - 00
—5.9154D - 02
0.0000D - Q0
0.0000D — 00

1.0618D — 02
—1.8033D - 05
7.3451D - 05
7.1020D - 05
3.9102D - 03

2.04940D - 02
—7.5883D - 05
~-4.2691D - 04
—-4.6779D - 03
29790 - 04

—

0.0000D — 00
—1.9519D - 00
0.0000D — 00
~39.2300D — 00
1.4404D — 00
0.0000D — 00
9.5785D — 01
0.0000D — 00
59.0480D — 00
-1.6383D — 00
-1.0618D — 02
1.8633D — 05
7.3451D — 05
—~7.1020D - 05
-3.9102D — 03
2.0494D — 02
7.5883D — 05
—4.2691D — 04
4.6779D - 03
—-1.2979D - 04

—~51.1370D — 00
0.0000D - 00
—1.8445D — 01
0.0000D — 00
0.0000D — 00
49.7810D — 00
0.0000D — 00
—-7.6791D — 01
0.0000D — 00
0.0000D — 00
1.5259D — 02
~4.1580D — 06
—~4.0607D - 05
299930 — 04
1.0870D — 04
—3.6496 D ~ 02
1.0468D — 05
7.9098D — 04
6.4531D — 04
~1.7904D - 05
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0.0000D — 00
—2.8733D - 05
0.0000D - 00
—-9.5265D - 01
—1.39540 - 03

0.0000D - 00
0.0000D - 00
0.0006D — 00
0.0000D - 00
0.0000D - 00

1.5259D - 02
9.1373D - 06
~4.0607D - 05
-2.9997D — 04
-1.08190 - 04

-3.6496D - Q2
-1.5268D - 05
7.9098D - 04
-9.41200 - 04
2.6114D - 05

0.0000D — 00
0.0000D - CO
0.0000D - 00
0.0000D - 00
0.0000D - 00

0.00000D - 00
1.0194D — 04
0.0000D - 00
1.0971D - 04
—-44117D - 03

0.00000 - 00
1.2956 D — 05
0.0000D — 00
7.0867TD — 04
-2.2160D - 05

0.00000 - 00
1.0815D - 04
0.0000D - 00
—1.53044D =00
-9.2447D - vl
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A2

B

B2

I

-

L

[ —1.9289D — 00

0.0000D - 00
7.2371D - 03
0.0000D - 00
0.0000D — 00

9.2900D - 01
0.0000D - 00
-7.2311D -03
0.0000D - 00
0.0000D - 00

—8.8814D — 03
-2.2384D - 05
7.2684D — 05
7.0004D - 05
3.8607D - 03

8.2180D — 03
—7.0757D - 05
7.4294D - 06
-4.2185D - 03
1.3394D - 04

0.0000D — 00
—-1.9561D — 00
0.0000D — 00
57.5160D — 00
1.6261D — 00
0.0000D ~ 00
9.6193D ~ 01
0.0000D — 00
57.7350D — 00
-1.8209D — 00
-8.8814D — 03
2.2384D — 05
7.2684D — 05
~7.0004D — 05
—3.8607D — 03
8.2180D — 03
7.0757D - 05
7.4294D ~ 06
4.2185D - 03
~1.3394D — 04

2.4122D - 00
0.0000D ~ 00
—~1.9644D — 00
0.0000D — 00
0.0000D — 00
~2.3558D — 00
0.0000D — 00
9.7021D — 01
0.0000D — 00
0.0000D — 00
1.0201D — 02
2.2204D - 06
~2.3547D - 05
1.7183D — 04
4.3589D — 05
—9.3663D - 03
2.1920D ~ 06
5.0055D — 05
1.3069D — 04
—4.1495D — 06

0.0000D — 00
--2.5617D — 05
0.0000D + 00
-9.5402D — 01
—1.5406D — 03
0.0000D — 00
0.00000 — 00
0.0000D — 00
0.0000D — 00
0.0000D — 00
1.3521D — 02
—3.6512D ~ 06
-3.9662D — 05
-2.9585D — 04
-8.8733D - 05
-1.2370D - 02
~3.6047D — 06
5.7807D — 05
—2.1491D - 04
6.8238D — 06

Table B.7. TF/TA ARMA Model - 30% Loss of Effectiveness Left Trailing Edge

0.0000D — 00
1.3735D - 03
0.0000D - 00
-1.4610D - 00
-9.2005D - 01
6.J000D — 00
0.0000D - 00
0.0000D — 00
0.0000D - 00
0.0000D - 00
0.0000D — 00
1.0626 D — 04
0.0000D — 00
1.1159D ~ 04
-4.3508D - 03

0.0000D - 00
7.5178D - 06
0.0000D - 00
4.4821 D — 04
~-1.1231D - u5
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Table B.8. TF/TA ARMA Model - 50% Loss of Effectiveness Left Canard

r

r

-

—~1.9180D — 00
0.0000D — 00
4.7557D — 03
0.0000D — 00
0.0000D — 00
9.1806 D — 01
0.0000D — 00

—-4,7512D - 03
0.0000D — 00
0.0000D — 00

—~1.3180D — 02

—-3.0171D - 06
4.2701D ~ 05
3.6503D — 05
2.2580D — 03
1.2025D — 02

—~5.25860 — 05

-2.0516D — 05

—4.4845D — 03
1.2193D - 04

0.0000D - 00
—1.9713D — 00
0.0000D — 00
—83.6540D — 00
2.0604D — 00
0.0000D — 00
9.7736D - 01
0.0000D — 00
83.3500D — 00
~2.2661D — 00
-9.7372D — 03
5.2788D — 06
8.4482D — 05
-8.5166D — 05
—4.4667D - 03
8.7762D — 03
1.0441D — 04
3.7108D - 05
8.9044D — 03
—2.4210D - 04

2.4247D — 00
0.0000D — 00
-1.9509D — 00
0.0000D — 00
0.0000D — 00
~2.3596D — 00
0.0060D — 00
9.5472D - 01
0.0000D — 00
0.0000D — 00
1.6645D — 02
3.0283D — 06
—4.6574D - 05
3.4423D — 04
6.4002D - 05
-1.4993D - 02
2.9923D — 06
3.2466D — 05
2.5519D — 04
—6.9381D ~ 06

0.0000D - 00 0.0000D — 00
~1.2614D - 05 -5.2084D — 04
0.0000D - 00 0.0000D =00
—-9.3315D - 01 —2.1289D — 00
-1.9038D — 03 -9.0350D - 01
0.0000D - 00 0.0000D - 00
0.00000 - 00  0.00000D — 00
0.0000D — 00  G.00000D — 00
0.00000D — 00 0.0000D - 00
0.0000D — 00 0.0000D — 00
1.6645D — 02 0.0000D - 00 7
-3.0283D - 06 1.1496 D — 04
—4.6574D — 05 0.0000D - 00
-3.4423D ~ 04 1.2590D - 04
-6.4002D —~ 05  —5.0749D - 03 |
—-1.49930D - 02 000000 =00 W
-2.9923D — 06 1.65960D — 05
3.2466 D - 05 0.0000D - 00
-=2.5519D - 04 1.4153D - 03
6.9381D — 06 —3.8481D - 05
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Table B.9. TF/TA ARMA Model - 25% Loss of Effectiveness Rudder

[ —=1.9129D + 00
0.0000D + 00
-1.2382D - 02
0.0000D + 00
0.0000D + 00

[ 9.1298D — 01
0.0000D + 00
1.2371D ~ 02
0.0000D + 00
| 0.0000D + 00

[ -8.3608D — 03
2.5912D — 05
7.2296D - 05
6.8601D — 05
| -7.0756D - 07

7.5351D - 03
-2.3735D - 05
1.7408D — 04
—-1.5983D - 03
5.9572D - 05

0.0000D + 00
—-1.98280D + 00
0.0000D + 00
-6.6691D + 01
2.3355D + 00

0.0000D 4+ 00
9.8717D - 01
0.0000D + 00
6.64750D + 01
—-2.4777D + 00

~8.3608D — 03
—-2.5912D - 05
7.2296 D — 05
~6.86010 — 03
7.0756 D - 07

7.5351D - 03
2.3735D - 05
1.7408D - 04
1.5983D — 03
-5.9572D - 05

1.7108D + 00
0.0000D + 00
-1.9545D + 00
0.0000D + 00
0.0000D + 00

-1.6414D + 00
0.0000D + 00
9.4454D — 01
0.0000D + 00
0.0000D + 00

1.3906 D - 02
1.8944D - 03
-3.9150D - 05
2.8136D - 04
~1.5069D - 01

~1.2552D -~ 02
1.9152D - 03
—2.0952D — 04
1.2897D - 01
—4.80680 - 03
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0.00000 + 00 0.00000 + 00
~5.6997D — 06 ~5.666TD — 04
0.0000D + 00 0.0000D + 00
~-9.4670D - 01 -1.6908D + 00
—2.0471D - 03 -9.0518D - 01
0.00000 + 00 0.0000D + 00
0.0000D + 00 0.0000D + 00
0.0000D 4+ 00 0.0000D + 00
0.0000D + 00 0.0000D + 00
0.00062 + 00 0.0000D + 00
1.3906 D — 02 0.00000D + 00
~1.63500 -~ 05 —=3.4926D - 04
-3.9150D - 05 0.00000D + 00
-=2.9590D — 04 8.5261D - 05
9.7093D - 04 2.9922D - 02
-1.2552D - 02 0.00000 + 00
—-1.6463D — 05 —4.0302D - 04
—2.0952D - 04 0.0000D + 00
-1.1086D — 03 -2.7139D - 02
4.1321D - 05 1.0115D - 03




Appendix C. GAIN MATRICES AND STEP RESPONSE ROOTS

This Appendix contains the fixed-gain matrices for the no failure flight conditions

and the w’ roots for the step response PI controller design.




Table C.1. Discrete PI Controller Gain Matrices - ACMENTRY

r -

0.2750 26579 226167  0.9347 3.2537
0.2750 -2.657v9 22.6167 -0.9347 -3.2537
K, = 0.3989 -0.8640 -2.9566  2.4292 -0.1156

0.3939 0.8640 -2.9566 —2.4292 0.1156
L 0.0000  4.5235 0.0000 2.3043 -3.40738

[ 0.0825 0.7974 6.7850 0.2804 0.9761
0.0825 -0.7974 6.7850 -0.2804 -0.9761
Ky = 0.1197 -0.2592 -0.8870 0.7288 -0.0347
0.1197 0.2592 -0.8870 -0.7288 0.0347
| 0.0000 1.3570 0.0000 0.6913 -—-1.0223

Table C.2. Discrete PI Controller Gain Matrices - ACMEXIT

[ -0.2877 1.8139 118.6223 5.9943 7.1919

-0.2728 -1.8515 112.4901 -6.1188 =7.3413

N, = —0.83052 -1.4469 -99.0041 19.5178 0.7930
-0.7271 1.5019 -131.2262 -19.3359 —0.5747

L —0.0326 3.8739 13.4352 7.9424 -24.4074

[ —0.0863  0.5442 35.5867 1.7983  2.1576
—0.0818 —0.5555  33.7470 —1.8356 —2.2024
K, = —0.2416 -0.4341 -29.7012 5.8553  0.2379
—0.2181  0.4506 —39.3679 —5.8008 —0.1724
| ~0.0098  1.1622 4.0306  2.3827 —7.3222

C.2




Table C.3. Discrete PI Controller Gain Matrices - TF/TA

0.1372 0.8360 15.3257  0.1741 0.8983
0.1549 -0.8360 15.9544 —-0.1741 —0.8983
K = 0.2707 -0.4656 9.5751 1.3828 0.0093
0.2608 0.4656  9.2249 —1.3828 —0.0093
| —0.0135 1.4562 —-0.5475 0.3824 -1.1936

0.0411 0.2508  4.5977  0.0522 0.2695
0.0465 -0.2508 4.7863 -0.0522 —-0.2695
No = 0.0812 -0.1397 2.8725  0.4148  0.0028
0.0782  0.1397  2.7675 -0.4148 -0.0028
| —0.0046 0.4368 -0.1643  0.1147 -0.3581

Table C.4. Step Response PI Controller Gain Matrices - ACM Entry

[ 5.4705 319.1986 145.8124 13.6863 39.6138
5.4705 -319.1986 145.8124 -13.6863 -39.6138
Ky = 79174 -103.6666 -18.4503 143.8869  —-7.2031
7.9174 103.6666 —18.4503 —143.8869 7.2031
| 0.0000 543.6125 0.0000 61.1122 13.4587

[ 0.0028 8.4049 6.9320 -3.8274  106.9155
0.0028 -8.4049 6.9320 3.8274 —106.9155
Ky = 0.0027 1.3925 7.9268 1.2441 —34.6890
0.0027 -1.3925 7.9268 —1.2441 34.6890
| 0.0000 24.4185 0.0000 -6.5138  180.3718
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Table C.3. Step Response FI Controller Gain Matrices - ACM Exit

[ —0.0058 0.2178  0.7526 —0.0085  0.0583
-0.0055 —0.2223  0.7138  0.0093 -0.0596
K, = -0.0163 -0.1734 -0.6660  1.3210 -0.0077 | «10°
-0.0147  0.1801 ~-0.8705 —1.3197  0.0095
-0.0007 0.4651  0.085. —0.2897 —0.1137

L

-0.8029 5.4103  -94.2627 9.1723 35.0569
-0.7614 -4.9904 -82.6466 13.2984 —73.4553
Ko = ~1.6540 9.2572 -~183.2629 27.4612 -59.1481

—1.4359 -3.1117 -~164.1554 20.5369 77.1570
| —0.0909 7.0755 -17.6024 -3.6862 174.8087

Table C.6. Step Response PI Controller Gain Matrices - TF/TA

2.7661 100.5031 108.0596 4.5846 11.7829
3.1223 -100.5031 113.2086 -—4.5846 —-11.7829
54248 558763 78.4220 80.0561 3.4695
| —0.3102 175.4099 —4.4842 12.0628 3.7161

0.0411 0.2508  4.5977  0.0522 0.2695
0.0465 -0.2508 4.7863 -0.0522 —0.2695
Ky = 0.0812 -0.1397 2.8725 04148  0.0028
0.0782 0.1397 2.7675 -0.4148 -0.0028
| —0.0046 0.4368 -0.1643  0.1147 -0.3581

K, =
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Table C.7. w plane roots for ACM Entry and TFTA for the step response method

| ACM ENTRY | TFTA
-4.T0E- -4.70E-°
6.63E~6 6.60E~°
S2.34E~ -2.45E~4
-2.86E3+ 32.10E-3 | -3.73E-3 £ 33.18£*
-2.2034 +7 .7398 -2.3131
-2.8844 +3 1.3522 -2.5416
-1.4674 +7 4.8738 -8.1269
-9.9482 (5) -2.8595 47 8.5404
-1.1482 £ 11.652 -9.9482 (5)
-45.617 +7 27.997 -11.434
-55.799 +7 31.105 -16.310

-56.411 £ 31.192
-56.522 + 31.006
-57.916 7 31.327

-24.174 +) 44.036
-51.822

-50.148 +7 30.743
-55.239 £ 29.878
-54.500 £ 31.901
-57.237 +7 31.264
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Appendix D. ADAPTIVE ALGORITHM

The following source code for the adaptive algorithm is a FORTRAN subroutine
obtained from Hammond (4) which has to be linked to MATRIXy. This algorithm
wili require more de;au.n inemory than found in M AT HiXx, so the stack size must be
increased in the MATRIXx FORTRAN code. Specific instructions to increase the stack
size and link FORTRAN code can be found in the M AT RI.Xx users manual. Also note

that the most recent versions of the IMSL Library and M AT RI X x are used.

Cl i
Cl THIS PROGRAM PROVIDES A RECURSIVE LEAST SQUARES ESTIMATION |
C| OF THE PARAMETERS FOR THE CRCA 5 X 5 A AND B COEFFICIENTS.

o LAST REVISION 11 SEPTEMBER 1989 I
Cl THIS PROGRAM SHOULD BE LINKED TO VERSION 10.0 IMSL LIBRARY |
C AND WAS WRITTEN TC RUN ON MATRIXX VERSION 7.0. l
Cl SEE rilt FOR.CCM FOR THE APPROPRIATE COMMANDS I

SUBROUTINE UPDUSR (INFO,NUMBER,T,U,NU,X¥,XDOT,NX,Y,NY,
+ RP,IP)

DOUBLE PRECISION T,U(*),X(*),Y(*) ,XDOT(*),RP(*)
INTEGER INFO(4), IP(*)

CHARACTER*3 CNUM

INTEGER MAXNUM
PARAMETER (MAXNUM=1)

IF (NUMBER.GT.MAXNUM) THEN
INFO(1)=-2
WRITE(CNUM,111) NUMBER
11 FORMAT(I3)
CALL MATWR(® *)
CALL MATWR
+ (*SIM_ERROR: NOT ABLE TO UPDATE USER FUNCTION’//CNUM)
RETURN
ENDIF
CALL USRO1 (INFO,T,U,NU,X,XDOT,NX,Y,NY,RP,IP)
RETURN
END




C! START OF USER SUBROUTINE FOR THE RECURSIVE LEAST SQUARES !

Cl ESTIMATION AND GAIN MATRIX CALCULATIONS FOR THE ARMA |
cl MODEL REPRESENTATION
[ e dada il T T S R,

SUBROUTINE USRO1(INFO,T,U,NU,X,XDOT,NX,Y,NY,RP,IP)
DOUBLE PRECISION T,U(*),X(*),XDOT(*),Y(*) ,RP(x),
XNPLUS(100,5) ,GAMD1(5,5) ,XNPLUST(5,100),
XNPLUSPN(S5,100) ,PN(100,100) ,GAMMA(S,5),
FORGET(S,5) ,PNXNPLUS(100,5),
GON(5,5) ,HINV(5,5) ,A1ARMA(S,5p1 10Q),
A2ARMA(5,5) ,B1ARMA{5,5) ,B2ARMA(S,5,,
K1(5,5),K2(5,5) ,PND2(100,100),
THED2(S) ,THED4(100),
THETA(100) ,EYE5(5,5) ,GAMMAI(S5,5) ,THED3(5),
SIGMA(S),G0(5,5) ,GODEN(5,5) ,PIT(S),
GODENI(S,S),PNPLUS(100,100) ,THETA1(100),
PXPLGAM(1C0,5) ,WK&REA(40),G0I(5,5)
INTEGER IP(*), INFO(4),N,IA,IDGT,IER,I,J,K,L
LOGICAL INIT,STATE, OUTPUT

P T

INIT INFO(2).NE.O
STATE = INFQ(3).NE.O
OUTPUT= INFO(4).NE.O
IF (STATE .OR. (.NOT. QUTPUT)) THEN

GOTO 999

ENDTF

N=5 *PARAMETERS FOR IMSL LIBRARY
LDA=5 'PARAMETERS FOR IMSL LIBRARY
LDAINV=5 !PARAMETERS FOR IMSL LIBRARY

TSTARI=.050 '3 PERIODS
IF (TSTART.GT.T) THEN
OPEN(UNIT=102,FILE='THETANOM.RLS’ ,STATUS="0LD’) 'THETA
DO I=1,100
READ(102,*) THETA(I)
END DO
CLOSE(102)
OPEN(UNIT=103,FILE="PONOM.RLS’ ,STATUS="0LD’) !'PN
DO I=1,100
DO J=1,100
READ(103,*)PN(I,J)
END DO

D-2




END DO

CLOSE(103)
GOTO 600 !'INSURES FULLY POPULATED XNPLUS
ENDIF
c ------------------------------------------------------------
ol CALCULATION OF NEW PARAHMETER VECTOR !
C ___________________________________________________________
CALL MMULT! (5,100,1,XNPLUST,THETA,THED2)
DO I=1,5
THED3(I) = U(I+10)-THED2(I)
END DO
CALL MMULT! (100,5,1,PXPLGAM,THED3,THED4)
D0 J=1,100
THETA1(J) = THETA(J) + THED4(J)
END DO
C ............................................................
C| UPDATE PARAMETER VECTOR FOR NEXT ITERATION
C ............................................................
DC I=1,100
THETA(I)=THETA1(I)
END DO
c .............................................................
Cl THE RECURSIVE UPDATE EQUATIGN STARTS HERE.
C .............................................................
C _____________________________________________________________

600 K=1 'COUNTER FOR UPDATE MATRIX
DO J=75,95,5
D0 I=1,5
XNPLUS(J+I,K) = U(I+5) 1U(I+5)--U(T-2)
END DO
K=K + 1
END DO

K=1 'COUNTER FOR UPDATE MATRIX
DO J=50,70,5
bor=1,5
XNPLUS(J+I,XK)=U(I) 'U(I)--U(T-1)
END DO
K=K + 1
END DO

K=1
D0 J=25,45,5
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Lo I=1,5
XNPLUS(J+I,K) = ~U(I+15) !'UPDATES Y(T-2)

END DO
K=K+1
END DO
K=1
c ___________________________________________________ [
DO J=0,20,5
DO I=1,5
XNPLUS(J+I,K)= -U(I+10) ! UPDATES Y(T-1)
END DO
K=K+1
END DO
Cmmmmmm e e e e e e mmmmmm e m———m e
C| CALCULATION OF P(K) * XN(K+ 1)
g
CALL MMULT (100,100,5,PN,XNPLUS,PNXNPLUS)
Cmm e e e e e e e e e e e mm e cmecem—e=
Ci CALCULATE XNPLUST = PN
(= mmmmm e mm e oo e m e e e m e e mmmm—m
[ T o g g U S

DG J=1,5
IF(I.EQ.J)THEN
FORGET(I,J)=U(31)
ELSE
FORGET(I,J)=0
END IF
END DO
END DO
DO I=1,5
DO J=1,100
XNPLUST(I,J) = XNPLUS(J,I)

END DO

END DO

CALL MMULT (5,100,100,XNPLUST,PN,XNPLUSPN)
Cmmmmm e e m e e m e e e mmmmmmmmmmmmae————m—m———
Cl CALCULATE X(N+1)T*«PN*X(N+1)
C ____________________________________________________________

CALL MMULT (5,100,5,XNPLUSPN,XNPLUS,GAMD1)
Cmmmmmm e e e e e e e meememmmmmm—mmmmmme—————— -
cl CALCULATE GAMMA(N+1)
m e mmmm et te e eetm c e mmmmmmmmmmm e m——————————
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DO I=1,5

DO J=t1,5
GAMMA(I,J) = FORGET(I,J) + GAMDI(I,J)
END DO
END DO
Commmmrtrrec e e e c v a-. e e e em - m e e e r e —m e, r e — e, —————-—-——
Cl COMPUTE GAMMA(N+1) INVERSE USING IMSL ROUTINE [
(S ettt R R b L L
CALL DLINRG (N,GAMMA,LDA,GAMMAI,LDAINV)
CALL MMULT (100,5,5,PNXNPLUS,GAMMAI,PXPLGAM)
(SR R i e T Ty
Cl CALCULATE PNPLUS, UPDATE OF COVARIANCE MATRIX
O R b T L T PR
CALL MMULT (100,5,100,PXPLGAM,XNPLUSPN,PND2)
Cess====sssssssas=ssS=sSsSoSssssSsssESsSSSsSS=SSs=SsSx=s==s========
DO J=1,100
DO K=1,100
PNPLUS(J,K)=PN(J,K)-PND2(J,K)
END DO
END DO
O T TR Uy i g

DO I=1,100
DG J=1,100
PN(I,J) = PNPLUS(I,J)
END DO
END DO

Cl I
C| THIS CONCLUDES THE BASIC CALCULATION OF THE LEAST SQUARES |
Cl ESTIMATE OF THE PARAMETER VECTOR THETA. NEXT THE GAIN !
|
|

Cl MATRICES WILL BE CALCULATED
o
Commmmmme e mceee—etaeaac e e—emmmaememeeemme————————
SR e T Y . T P
Cl I
Cl CALCULATION OF THE IDENTITY MATRIX FOR § X § |
O L L L T T PRy T
DO I=1,5
DO J=1,5
IF(I.EQ.J)THEN
EYES(I,J)=1
ELSE
EYES(I,J)=0
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END IF
END DO
END DO

K=0
DO I=1,5
Do J=1,5

A1ARMA(I,J)=THETA(K + J)
A2ARMA(I,J)=THETA(25 +K + J)
B1ARMA(I,J)=THETA(S50+K+J)
B2ARMA(I,J)=THETA(75+K+J)
GON(I,J) =B1ARMA(I,J) + B2ARMA(I,J)
GODEN(I,J) =EYES(I,J) + A1ARMA(I,J) + A2ARMA(I,J)

END DO
K=K + 5
END DO
C:============================================================
CALL DLINRG (N,B1ARMA,LDA,HINV,LDAINV)
CALL DLINRG (N,GODEN,LDA,GODENI,LDAINV)
c ..............................................................
(of INITIALIZE SIGMA MATRIX
Cormmetc e e eccccccsccccmmmmemm e m e mrece—————————
DA I=1,8
SIGMA(I)=U(I+20)
END DO
C ..............................................................
cl INITIALIZE PI MATRIX
Crmmm—= - - - - - - - - - D " = = " - - - ——— - - -
DO I=1,5
PIT(I1)=U(25+I)
END DO
C ..............................................................
o CALCULATION OF G(O) AND INV(GO)
C ______________________________________________________________
CALL MMULT (5,5,5,GODENI,GON,GO)
CALL DLINRG (N,GO,LDA,GOI,LDAINV)
C ..............................................................
cl CALCULATION OF K1 AND K2 FOR GAIN |
C ..............................................................
DO I=1,5
DO J=1,5

K1(I,J)= HINV(I,J)*SIGMA(J)
K2(I,J)= GOI(I,J)*PIT(J)
END DO
END DO
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Cl THE FOLLOWING ROUTINES WILL PREPARE THE QUTPUTS OF THE USER |
Cl BLOCK. Y(1) - Y(25)=K1, Y(26)-Y(50)=K2,Y(51)-Y(150)=THETA [

DO J=1,5
Y(J+K)=K1(I,J)
Y(J+L)=K2(1,D)

END DO

K=K+5
L=L+5
END DO
DO I=1,100
Y(I+50)=THETA(I)
END DO
999 RETURN
END

SUBROUTINE MMULT (MATARW,MATACL,MATABCL,MATA,MATB,MATC)
DOUBLE PRECISION MATC(MATARW,MATABCL) ,MATA(MATARW,MATACL),
+ MATB(MATACL ,MATABCL)
INTEGER MATARW,MATACL,MATABCL
DO I=1,MATARW
DO K=1,MATABCL
SUM=0 'RESET PRODUCT SUM
DO J=1,MATACL
SUM=SUM + MATA(I,J)*MATB(J,K)
END DO
MATC(I,K)=SUM
END DO
END DO
RETURN
END

SUBROUTINE MMULT1 (MATARW,MATACL,MATABCL,MATA,MATB,MATC)
DOUBLE PRECISION MATC(MATARW) ,MATA(MATARW,MATACL),
+ MATB(MATACL)

INTEGER MATARW,MATACL,MATABCL

DO I=1,MATARW :
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SUM=0 'RESET PRODUCT SUM
DO J=1,MATACL
SUM = SUM + MATA(I,J)*MATB(J)
END DO
MATC(I) = SUM

END DO
RETURN
END
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